

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

DISSERTATION

Approved for public release; distribution is unlimited

DATA STRATEGIES TO SUPPORT AUTOMATED MULTI-
SENSOR DATA FUSION IN A SERVICE ORIENTED

ARCHITECTURE

by

Kurt J. Rothenhaus

June 2008

Dissertation Supervisor: James Bret Michael

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for
reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and
reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2008

3. REPORT TYPE AND DATES COVERED
Dissertation

4. TITLE AND SUBTITLE: Data Strategies to Support Automated Multi-
Sensor Data Fusion in a Service Oriented Architecture
6. AUTHOR: CDR Kurt Rothenhaus

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The quantity of data available to decision makers of various types is rapidly expanding beyond the pace
of manual interpretation techniques (Hobbins, 1). Introducing a Service Oriented Architectures (SOA)
based web service framework that exposes even more data without sufficient guidance will exacerbate
the situation. Ontology’s, data descriptions and discovery methods alone are not enough to create the
end-to-end solutions promised by SOA technologies. Software architectural patterns in conjunction with
broad data strategies are required to harness and employ vast quantities of content. This dissertation
provides two software architectural patterns and an auto-fusion process that guide the development of a
distributed, accountable and scalable SOA framework to support improved control and monitoring
software. Although applicable to a wide range of software control system challenges, the dissertation
will focus on a Maritime Domain Awareness (MDA) interoperability challenges. Using the U.S. Navy’s
MDA project as a case study, this dissertation will design, build and test a prototype automated data
fusion framework employing the trickle-up and Command and Control Zone pattern that automates the
discovery, pedigree assessment and ultimate fusion of dissimilar data types in a SOA web-service
supported framework.

15. NUMBER OF
PAGES

240

14. SUBJECT TERMS : Fusion, Multi-Sensor, Service Oriented Architectures, Software
Engineering, Common Operations Picture, FORCEnet, Software Framework, Web Service Definition
Language (WSDL), Universal Discovery Directory Index (UDDI), Simple Order Access Protocol
(SOAP), Java, Maritime Domain Awareness (MDA), Business Process Execution Language for Web
Service (BPEL4WS)

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18-298-102

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

DATA STRATEGIES TO SUPPORT AUTOMATED MULTI-SENSOR DATA
FUSION IN A SERVICE ORIENTED ARCHITECTURE

Kurt Joseph Rothenhaus

Commander, Program Executive Office C4I
Navy Program Office for Command and Control (PMW-150), San Diego, CA.

B.S., University of South Carolina, 1992
M.S., Naval Postgraduate School, 1999

Submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2008

Author: __

Kurt Joseph Rothenhaus

Approved by:

______________________ _______________________
James Bret Michael Man-tak Shing
Professor of Computer Science Associate Professor of
Dissertation Supervisor Computer Science
Committee Chairman

______________________ _______________________
Ted Lewis John Osmundson
Professor of Computer Science Research Associate Professor of
 Information Science

Dave Engel
Senior Scientist, Northrup Grumman

Approved by: __
 Peter J. Denning, Chairman, Department of Computer Science

Approved by: __
 Orrin D. Moses, Associate Provost for Academic Affairs

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The quantity of data available to decision makers of various types is rapidly

expanding beyond the pace of manual interpretation techniques (Hobbins, 1). Introducing

a Service Oriented Architectures (SOA) based web service framework that exposes even

more data without sufficient guidance will exacerbate the situation. Ontology’s, data

descriptions and discovery methods alone are not enough to create the end-to-end

solutions promised by SOA technologies. Software architectural patterns in conjunction

with broad data strategies are required to harness and employ vast quantities of content.

This dissertation provides two software architectural patterns and an auto-fusion process

that guide the development of a distributed, accountable and scalable SOA framework to

support improved control and monitoring software. Although applicable to a wide range

of software control system challenges, the dissertation will focus on a Maritime Domain

Awareness (MDA) interoperability challenges. Using the U.S. Navy’s MDA project as a

case study, this dissertation will design, build and test a prototype automated data fusion

framework employing the trickle-up and Command and Control Zone pattern that

automates the discovery, pedigree assessment and ultimate fusion of dissimilar data types

in a SOA web-service supported framework.

 vi

TABLE OF CONTENTS

I. INTRODUCTION..1
A. TRICKLE-UP AND ZONE PATTERNS FOR COMMAND AND

CONTROL IN A SERVICE ORIENTED ARCHITECTURE
FRAMEWORK..5

B. GOALS OF RESEARCH AND ADVANCES IN SOFTWARE
ENGINEERING...9

C. TECHNOLOGIES, RESEARCH STRATEGY AND METHODS10

II. BACKGROUND ..15
A. MULTI-SOURCE DATA FUSION BACKGROUND15
B. PREVIOUS SOA WORK IN THE ISR DOMAIN.....................................17
C. COMMAND AND CONTROL/INTELLIGENCE SURVEILLANCE

AND RECONNAISSANCE BACKGROUND..19
1. Emergence of PC-Based C2 Systems..20
2. The Common Operating Environment..21

D. POTENTIAL OF SERVICE-ORIENTED ARCHITECTURES23
E. SERVICE ORIENTED ARCHITECTURES BACKGROUND24

1. Extensible Mark-up Language (XML) ..26
2. Message Oriented Middleware (MoM)..27
3. Orchestration and Discovery ..31

III. TRICKLE-UP AND ZONE SOFTWARE DESIGN PATTERNS........................33
A. TRICKLE-UP SOFTWARE DESIGN PATTERN33

1. Pattern Name..34
2. Pattern Intent ...34
3. Pattern Motivation...35
4. Pattern Applicability ...36
5. Pattern Structure ...36
6. Pattern Participants...40
7. Pattern Collaborations ..41
8. Pattern Consequences..43
9. Pattern Implementation ..43
10. Pattern Known Uses ..45
11. Related Patterns ...45
12. Pattern Categories ...45

B. C2-ZONE SOFTWARE DESIGN PATTERN..46
1. Pattern Name..46
2. Pattern Intent ...46
3. Pattern Motivation...46
4. Pattern Applicability ...47
5. Pattern Structure ...48
6. Pattern Participants...51
7. Pattern Collaborations ..52

 vii

8. Pattern Consequences..54
9. Pattern Implementation ..55
10. Pattern Sample Code ...55
11. Pattern Known Uses ..56
12. Related Patterns ...56
13. Pattern Categories ...56

IV. APPLYING TRICKLE-UP SOFTWARE PATTERNS TO MDA.......................57

V. SOA C2 APPLICATIONS-ZONE COMMON OPERATIONAL PICTURE
TOPOLOGY ..61
A. ZONE-DEFINED C2 PATTERN...61
B. CROSS WALK RELATIONSHIP BETWEEN ZONE AND

TRICKLE-UP PATTERN ..66
C. CONTRASTING TRADITIONAL C2 STRUCTURES TO

DISTRIBUTED ZONES ...71

VI. MULTI-SOURCE DATA FUSION DISCOVERY SERVICE- AUTO-
FUSION ..75

VII. MARITIME DOMAIN AWARENESS (MDA) SYSTEM OF SYSTEM
CHALLENGE..79
A. MDA TECHNICAL CHALLENGE ..80
B. MDA EMPLOYMENT OF THE TRICKLE-UP PATTERN82
C. MDA EMPLOYMENT OF THE ZONE PATTERN.................................83
D. MDA EMPLOYMENT OF THE AUTO-FUSION METHOD86
E. MDA DATA STRATEGY...87

1. MDA Trickle-up Pattern Data Strategy Mapping89
2. MDA Zone Pattern Data Strategy Mapping89
3. MDA Auto-fusion Process to Data Strategy Mapping91

VIII. PROTOTYPE SOFTWARE SYSTEM ...93
A. INTRODUCTION..93
B. LEGACY SYSTEM DESIGN...93
C. SOA PROTOTYPE SYSTEM..97

1. Overall Architecture..97
2. System Environment and Foundation Commercial Products100
3. Enterprise Java Bean (EJB) Modules ..100

a. Significant Attack (SIGACT) Enterprise Java Bean (EJB)
Module...100

b. Iraq Reconstruction Project Enterprise Java Bean (EJB)
Module...106

c. Fusion Engine Enterprise Java Bean (EJB) Module112
d. New Track Enterprise Java Bean (EJB) Module118

4. Servlet Modules with Keyhole Markup Language122
5. SIGACT KML Servlet...124
6. Reconstruction Project KML servlet. ..129
7. New Track KML servlet..133

 viii

8. Business Process Execution Language Modules (BPEL)137
D. FUSION DISCOVERY PROTOTYPE..139
E. HOW THE PROTOTYPE VALIDATES THE THREE TIER

MODEL ..141
F. LIMITATIONS OF THE PROTOTYPE SOFTWARE AND

RECOMMENDATION FOR FURTHER VALIDATION......................141

IX. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE
RESEARCH ...143
A. RECOMMENDATIONS FOR FUTURE RESEARCH...........................148

APPENDIX. SOURCE CODE...153

LIST OF REFERENCES..221

INITIAL DISTRIBUTION LIST ...225

 ix

LIST OF FIGURES

Figure 1. Knowledge Level-Trickle-up Pattern Mapping.. 6
Figure 2. Trickle-up Pattern Example ... 8
Figure 3. Graham's SOA"Stack"position in the OSI.. 11
Figure 4. Basic SOA Relationships.. 12
Figure 5. Graham’s Web services interoperability stack ... 13
Figure 6. ONR Data Fusion Cycle ... 15
Figure 7. JDL Fusion Process .. 17
Figure 8. Chief of Naval Operations strategic focus areas with system overlay 19
Figure 9. The GCCS Common Operating Environment Architecture 22
Figure 10. J2EE Technology Stack .. 29
Figure 11. Reference JMS Afloat Architecture.. 30
Figure 12. Net Framework Technology Stack ... 31
Figure 13. Basic Object Management Service ... 37
Figure 14. Data Fusion Service .. 37
Figure 15. Trickle-up Software Design Pattern ... 39
Figure 16. UML Diagram of OMS and DFS ... 40
Figure 17. Collaborations for OMS.. 41
Figure 18. DFS Collaborations... 42
Figure 19. Zone Pattern Structure .. 48
Figure 20. Zone Source Manager... 49
Figure 21. Zone Consumer Manager.. 49
Figure 22. Zone Participant Manager... 50
Figure 23. Multiple Zone Structure.. 50
Figure 24. Zone UML structure diagram ... 51
Figure 25. OMS to Zone Collaboration ... 52
Figure 26. Zone Consumer Collaborations .. 53
Figure 27. Zone Participant Collaborations ... 54
Figure 28. Trickle-up pattern applied to MDA .. 57
Figure 29. Sample Report Object ... 58
Figure 30. Sample Track Window ... 59
Figure 31. Hierarchical to Distributed COP... 62
Figure 32. Zone Pattern applied to Composite Warfare Commanders 63
Figure 33. Google Earth Display of Iraq Reconstruction Projects............................. 65
Figure 34. Trickle-up Pattern Applied ... 68
Figure 35. Sample UDDI Display .. 69
Figure 36. Auto Fusion Process ... 75
Figure 37. MDA Enterprise Hub Architecture (MDA CONOPS) 80
Figure 38. MDA Sample Sea Lines of Communications View 85
Figure 39. Reconstruction Analyst Toolset GUI.. 94
Figure 40. Google Earth and Falcon View display .. 95
Figure 41. RAT System Overview... 96
Figure 42. Web Service Prototype Architecture .. 98

 x

Figure 43. BPEL Process from NetBeans 5.5 GUI .. 99
Figure 44. Dynamic Google Earth System Architecture.. 123
Figure 45. Auto-Fusion Discovery Application... 140
Figure 46. Pattern and Process Research Framework .. 149

 xi

ACKNOWLEDGMENTS

I wish to thank the Navy Program Office for Command and Control and the Navy

Program Office for Intelligence Surveillance and Reconnaissance, John Shea (PMW-

120), CAPT D.J. Legoff and Greg Settelmayer (PMW-150) for sponsorship of this

research. Additionally, I wish to thank Mr. Steve Shell, Dr, Jeff Lansing, Dr. Frank

White, Diana Akins, Dr. Otto Kessler and Dr. Marv Langston for their advice and

assistance in understanding data fusion and software development. Furthermore, I wish to

thank RADM Michael Mahon, USN, for his at-sea instruction on Command and Control

doctrine.

I would like to thank Lieutenant Colonel Tom Cook for his thorough review of

the research, his friendship and generosity. Furthermore I wish to thank the committee

members for their guidance during the research. Special thanks to Professor Shing for

providing critical instruction in software patterns and Unified Modeling Language.

Furthermore I wish to thank Professor Ted Lewis for introducing me to Command and

Control software development and his generous support and instruction, first as my

computer science master’s thesis advisor in 1999 and as a member of the dissertation

committee.

I wish to thank Dr. Dave Engel for his generosity and wisdom in the conduct of

this research and serving on the committee. It was an honor and a privilege to work with

one of the leaders in the Command and Control community. Furthermore I wish to thank

Professor James Bret Michael for his mentorship, instruction and brilliance. His

dedicated efforts were the foundation for the study and his tireless efforts both as an

educator and a researcher were critical during all phases of the research.

Finally I wish to thank my wife Momoko and daughters Mia and Nina for their

patience, support and love.

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

The Department of Defense (DoD) Integrated Architecture Panel defines software

architecture as “the structure of components, their relationships, and the principles and

guidelines governing their design and evolution over time” (DoDAF, D-1). The DoD

Net-Centric Data Strategy details goals to expand data management beyond

standardization towards increasing data “visibility and accessibility” (Net-centric, 2003).

A data strategy serves in large organizations such as the DoD, as guidance in the

development of architectures to foster interoperability between systems that have

independent requirements, sponsors, and funding streams. Data strategies and

architectures support data visibility and accessibility, by guiding the development of

interoperable software systems. Developing a suitable enterprise data strategy is

challenging, as policy-makers balance the demands to standardize, while avoiding an

overly limiting policy which would likely discourage innovation and improvement. A

balanced data strategy should foster basic interoperability standards that make DoD data

visible and accessible, by lowering the barrier of entry of authorized consumers to the

content.

Systems of systems are normally comprised of multiple independent services to

satisfy a desired behavior or need. Systems such as the Navy’s AEGIS program

integrated a number of unique systems to create complex systems of systems which

included missiles, fire control, hull and mechanical among others. The high cost of

integrating new capabilities is the primary motivation for moving towards a more loosely

coupled binding between those systems. Web-enabled Service Oriented Architecture

(SOA) can be viewed as a new phase in the evolution of software architectures, that being

from standalone single-use embedded systems, to today’s web-enabled systems

(PRESSMAN, 12). SOA consists of discrete services, choreographed and linked to

create added value by employing an overarching discovery and orchestration technology.

If data strategies provide overarching guidance in the follow-on development of

architecture and design, then what would be an example of a data strategy concept of

sufficient magnitude? For example, one of the critical requirements of the Internet

 2

Protocol (IP) when the Defense Advanced Research Project Agency (DARPA) designed

the infant Internet (known as ARPANET) was resilience to attack. Specifically, if a node

or a link was destroyed in a nuclear attack, the system would continue to function and

move data to its ultimate destination, albeit in a degraded mode of operation. The

Internet resilience strategy requirement drove many other implicit and explicit design and

architecture decisions about such things as unique addressing logic for each packet,

router handling and Domain Name Services (DNS). These requirements manifested in a

scalable and robust communications infrastructure for a broad range of information

systems.

Examining a DoD data strategy for Joint Maritime Domain Awareness (MDA)

requirements might include high-level goals to handle the increased quantities and variety

of data (Steinberg, 2-2). One mechanism to handle the increased data quantity and

variety includes architecting systems in such a manner as to facilitate auto-fusion. Fusion

relates to the concept of taking two dissimilar data elements and combining them to

create information (Hall, 1-1). For example, in a military context two system outputs

such as one radar generated surface track, paired with an acoustic report can assist

operators in categorizing a target. In a commercial example, a sales report and a weather

report can be paired to reveal trends in sales as it relates to climate. Auto-fusion moves

beyond traditional fusion, by automatically pairing data sources with fusion algorithms,

which are optimized for the specific tactical environment.

Traditionally, data fusion was accomplished in a single system where developers

had significant control of data definitions, timing, and the use of the system output

(Bowman, 16-2). In today’s Intelligence, Surveillance and Reconnaissance (ISR)

system’s attempting to fuse data from a set of heterogeneous systems is a challenge as

each system may define its data objects differently, employ different communications

protocol’s and in many cases operates on different computing platforms. Combining data

from various systems to increase situational awareness can involve complex and costly

reengineering of the legacy system or comprising the ISR system of systems. A SOA

based auto-fusion system must have a communication mechanism that provides for the

mapping of one data set to another, a method for one service to discover the existence of

 3

other related services and fusion engine’s and an overarching mechanism to initiate and

orchestrate the activities throughout the process.

Conducting multi-source fusion in a SOA has a number of challenges and

benefits. Traditional ISR systems tend to have tightly integrated fusion logic with the

presentation, persistence, and other processing logic residing in a single system.

Although traditional ISR systems performed analysis relatively quickly and efficiently,

the rigidity and tight-coupling of these systems limits their ability to address changing

tactical situations or incorporate updated algorithms and new sources. In contrast, with

SOA-based ISR systems, fusion algorithm logic can be reused and exchanged with a

variety of data sources in a plug and fight framework. A framework in this case is the

collection of data sources, data algorithms, along with binding, management, and

persistence services tailored to provide situational awareness. A number of challenges

exist to fuse data in a distributed system which is compounded in a SOA. These

challenges are often referred to as data alignment, which includes common formatting,

time propagation, misalignment compensation, and evidential conditioning (Bowman,

16-30). Common formatting refers to the machine-to-machine common language; time

propagation relates to the criticality of time as a critical component of many fusion

processes; coordinate conversion refers to the ability to employ various standards in data

descriptions; misalignment compensation refers to the ability to adjust the process for

known errors; and evidential conditioning refers to employing measures of probability or

other likelihood in adjusting a process output.

To address some of the challenges mentioned above, this dissertation introduces

two software architectural patterns and an auto-fusion process to influence elements of

the Navy’s Maritime Domain Awareness data strategy, with a focus on fostering auto-

fusion in a SOA multi-source data framework. Software design patterns are proposed

since the constructs are applicable to more than one instance and have applicability

across the control and monitoring software domain. Software design patterns are high-

level abstractions that provide the “why, where and how, not just what” for software

design (Buschmann, 4). The hypothesis for the research present in this dissertation is that

the two patterns and the auto-fusion process, applied in a SOA-based control-and-

 4

monitoring software domain, enhance our ability to manage the significant quantities of

data expected in a SOA environment. The research reported here is applicable to a wide

spectrum of control and monitoring software challenges, such as industrial process

monitoring or medical diagnostic systems. The patterns and process enhance the ability

of systems and users to better manage remote sensor data and establish accountability and

pedigree constructs for the control and monitoring software domain. Additionally, the

research provides unique software patterns for the SOA distributed control and

monitoring domain as well as a novel approach to data service management, description,

and discovery in a SOA to improve situational awareness across a broad range of

systems. The research builds on existing software design, maintenance, and management

theory and practice by introducing new patterns for SOA base d systems, unique views

on code reuse, and architectures that enable management of the evolution of software

systems.

MDA is a good application domain in which to conduct SOA research. MDA

requires combining various data sources with a wide range of pedigree and processing

methods in a SOA framework. To address the heterogeneous nature of the data sources,

various analysis algorithms and wide variety of data management methods, the research

proposes two software design patterns; trickle-up and zone. The patterns are applied in

an MDA command and control environment to explore the potential benefits of

employing the patterns. The projected benefits of the trickle-up pattern are to better

organize SOA services to enable dynamic discovery and improve software reuse. The

Zone pattern potentially provides scalable methods to manage interface and partner

dependencies. The zone and trickle-up pattern combined in a SOA enables an Auto-

fusion process to discover and orchestrate data sources to improve user situational

awareness in an MDA mission. A challenge of auto-fusion is its demand for seamless

data exchange and the right processing logic at various levels of the architecture, which is

discussed in greater detail in chapter four. The prototype auto-fusion framework

developed in this dissertation will operate on a web-service platform; utilizing open

standards based technologies such as orchestration and messaging. The resulting

prototype examines methods to automate the discovery of new data sources, pedigree

 5

assessment and ultimate fusion of dissimilar data types in service oriented architectures.

In this dissertation, we start by determining the location and type of processing logic

required for auto fusion. Next we develop a data model described as the trickle-up pattern

that supports auto data fusion on a web-service platform to include data-exchange

requirements between services, ontology definitions for discovery, and business-process

statements to orchestrate fusion activities. We then provide a zone pattern for employing

the trickle-up content. We demonstrate our approach via a prototype auto-fusion system

on an enterprise web platform such as Sun Application server and simulate Maritime

Domain Awareness Pilot’s core and sensor services to validate the model.

A. TRICKLE-UP AND ZONE PATTERNS FOR COMMAND AND
CONTROL IN A SERVICE ORIENTED ARCHITECTURE
FRAMEWORK

Commander of the United States Pacific Fleet, Vice Admiral Robert F. Willard,

defines C2 as the following; “Command is the doctrinal assignment of authority and

Control is defined as guiding the operation” (Willard, 1). In his paper the Art of

Command and Control, VADM Willard discusses the roles of commanders at the

strategic and operational level of conflict to; maintain alignment, provide situational

awareness, advance the plan, comply with procedure, counter the enemy and adjust

apportionment (Willard, 2). Supporting his commander’s roles, VADM Willard

discussed C2 systems roles to provide a means to exchange relevant and timely

information (Willard, 2). The exchange of timely and relevant information bridges two

system domains; ISR and C2. In general ISR provides battlespace awareness and sensing

content, and the C2 system provides commanders context and intentions. The crossroads

of these systems is often referred to the Common Operational Picture (COP). The COP is

where intelligence overlays the perceived location and intentions of the enemy, with the

laydown of blue forces and the commanders plan. The COP is then replicated throughout

the force as a means to communicate relevant and timely information, in an actionable

format. This dissertation research focuses on the application of SOA technology on the

 6

COP by providing software patterns and processes that address data fusion by means of

the trickle-up pattern and the COP data management and synchronization by means of the

zone pattern.

A number of concepts support the capability to autonomously fuse dissimilar data

from differing sensors in a defense related enterprise framework. Firstly, service oriented

architectures enable content from various sensors to reside as a discoverable discrete

source. Secondly, using the Joint Directors of Laboratories (JDL) four-phase functional

fusion model we can map established definitions and processes within the fusion domain

to the command and control(C2)/ISR models described in this research (Llamas, 12).

Thirdly, applying general concepts of knowledge management allows the proper

assignment of data definitions and categories essential to architecting an enterprise

approach to data fusion. Knowledge management’s progressive levels such as data to

information to knowledge can be adapted to C2 track-centric systems with a report to

track-to-entity structure (extensible Tactical C4I Framework, 8) shown in Figure 1 below.

ReportsReports

TracksTracks

EntitiesEntities

AttributeAttribute ELINTELINT MTIMTILINKLINK

Figure 1. Knowledge Level-Trickle-up Pattern Mapping

Moving up from data to information we have data about the data which is metadata.

Following the information level we start to apply the information to specific problems

which graduates to knowledge which provides methods to apply information to solve a

 Data

Information

 Knowledge

 7

problem. Reports are not always simple atomic data elements and an entity is a broad

term to define relations between various types of information that may not be knowledge.

For example at the first tier, data-level knowledge maps to reports. Reports tend to be

atomic-level defense-related information such as a frequency at a certain bearing or a

radar return as a specific bearing and range. These report-level objects are the building

blocks for the next level of information, known as tracks. Tracks are objects usually

associated with kinematics, such as the vectors (direction and velocity). The identity of

the track object is often determined by meta-data from the track such as “its an aircraft

since it has altitude” or “the track is a fighter aircraft because its going over 1000 mph”

The next level of the information data model is knowledge and we map that to the Entity

level in the trickle-up pattern. Knowledge is the ability to take data and information,

analyze them, and in some cases predict outcomes or execute more complex analysis.

Knowledge is a difficult concept to map to a data model and recognizing the varied

nature of knowledge a broadly defined term such as “Entity” is used. An example of an

entity-like object is the fusion of an acoustic object identified as a submarine’s course,

speed, and position with a piece of intelligence on the tactical preference of the

submarine’s commanding officer. This broad definition of an entity permits the essential

flexibility in employment. Figure 2 is an example of ELINT (electrical signals intercepts)

and acoustic-report objects fused into an anti-submarine warfare (ASW) track, which is

then fused into a strategic ASW object when combined with strategic intelligence objects.

 8

Figure 2. Trickle-up Pattern Example

The model above could exist in a number of systems, to include traditional

vertically integrated systems that handle the data streams from sensor to human-computer

interface (HCI) hard coding the fusion logic as required. A SOA-based model permits a

more distributive architecture enabling:

• Open standard interface to each level of contents

• Loosely coupled services which can be configured during runtime in

response to changing requirements

• Multiple “fusion engine” services to connect at runtime, allowing

optimization of the fusion process by employing the best service

components (e.g. algorithms) for the data involved

• Service reuse through employment of a service beyond initial planned use

Although some interesting analogues exist between the knowledge level and the trickle-

up pattern discussed above, a one-to-one mapping for each level does not exist, though

some overlap in definitions is present.

Acoustic input

Acoustic Report
Manager

Anti-Submarine
Warfare Fusion
Service

Acoustic Report
Manager

Regional
Command
COP

 Report Tier

Track Tier Entity Tier

ELINT input
Fusion
Engine

Fusion
Engine

Intelligence ELINT Report
Manager

 9

B. GOALS OF RESEARCH AND ADVANCES IN SOFTWARE
ENGINEERING

The problem the dissertation is addressing concerns that in a SOA environment

vast quantities of data will be exposed and present methods of data management are

inadequate to manage it (Hobbins, 1). The hypothesis is that data ontologies, meta-data

and discovery are not enough to address the volume of data expected to manifest itself in

a SOA framework where significant data of various types are exposed and the two

patterns and process proposed in the research can aid in managing the data. The research

takes a holistic approach, starting with the two software patterns and auto-fusion process,

then building prototypes, and finally providing input to the Maritime Domain Awareness

data strategy to support an auto-fusion framework. The trickle-up pattern addresses the

data source and fusion engine layer, the zone pattern addresses the relationships between

the consumer of the trickle-up content and users, and the auto-fusion process provides a

unifying method to dynamically manage the data.

Specifically the research involved developing:

• Trickle-up software pattern and data model to organize SOA services and

promote dynamic discovery and binding.

• A trickle-up prototype to examine the location of processing logic in a web-

enabled SOA architecture to support separating fusion engine from data

source. The prototype system is built using Enterprise Java Beans and Java

Servlet technology to include a XML based transport methods.

• A Command and Control Zone pattern to provide a scalable method to

manage data, user, and consumer interfaces and dependencies as well as

impacts on alternate Common Operations Picture topologies that result from

the pattern.

• A demonstration using web-standard Business Process Execution Language

for Web-services (BPEL4WS) to orchestrate the fusion process via a

prototype system.

 10

• An auto-fusion discovery service for fusion candidate selection. Propose an

auto-fusion figure of merit to compare various service pairs and fusion

algorithms.

• An examination of auto-fusion as an overarching data strategy to support

improved Maritime Domain Awareness goals.

This research will provide guidance to the ISR community on the employment of

a SOA to support improved situational awareness and decision making. Additionally,

auto data fusion has commercial as well as military implications in the development of

SOA. Systems developed today often involve a hub and spoke architecture where data

from various sources are pulled into a central processing system for analysis. The

research in this paper examines the use of a more distributed architecture where

processing occurs at many different locations throughout the topology from various

sources. The research applies to the general knowledge-management domain and

provides an enterprise approach to information association and pattern matching enabling

an automated mechanism to create a new data service comprised of two or more original

sources. The research will examine potential implications on enterprise data management

created from auto data fusion, and provide supporting artifacts for an MDA data strategy.

C. TECHNOLOGIES, RESEARCH STRATEGY AND METHODS

The goal of developing the prototype software is to validate the concept of auto-

fusion in a SOA and provide a reference implementation for the two software patterns.

The model employs a number of SOA web service technologies at various levels of

maturity. Thomas Erl defines SOA as “baseline distributed architecture with no

reference to implementation” (Erl, 1). He continues that coupled with web-service based

technologies a real platform for “federation, agility and cross-platform harmony

emerges” (Erl, 2). The basic principle of SOA involves two or more services

exchanging data in a manner that supports reuse of the service. In many ways SOA is an

abstraction or extension of object oriented programming with each service having a

defined interface, a standardized communication method, and a method to discover

various services. Sarukkai and Cohen discuss the position of SOA enabled web-services

 11

in the Open Systems Interconnect (OSI) stack (Sarukkai, 3). Level six is the presentation

level, which encompasses the protocol, data conversion, and transport policies. The

communications methods web-services employ, such as simple order access protocol

(SOAP), fit into the level six definitions. Figure 3 below shows the relative position in

the OSI model, contrasted to Grahams proposed SOA “stack,” explained later in this

section. The web applications would reside on level seven or application level, and the

session level or level five remains the transport protocols. Later in the section, an

adaptation of the OSI model directed specifically at the various technologies comprising

web-service SOA is discussed.

Figure 3. Graham's SOA"Stack"position in the OSI

Figure 4, below adopted from Erl shows the basic exchanges between services

and a service registry. The diagram below is technology independent, however

webservice standards have demonstrated a potential to fulfill the architectural

requirements of a SOA. For example the webservice description language (WSDL)

standard has meta-data about a service in a standard format such as a description of the

Network

Transport

Session

Presentation

Physical

Application

Data Link

Transports

Messaging

Description

Quality of
Experience

Compositional

W
eb-enabled

Service O
riented

A
rchitectures

 12

content and location. A registry standard such as Universal Discovery Directory Index

(UDDI) can store service information in an open and standard format. Finally a standard

method of data exchange of exists in standards such as Simple Order Access Protocol

(SOAP). In summery a primitive webservice SOA is supported by three current

standards; WSDL for service description, SOAP for messaging, and UDDI for service

registry (Erl, 75).

Figure 4. Basic SOA Relationships

 Primitive SOA’s provide interoperability improvements, but additional standards

exist to address greater functionality. These standards include methods to orchestrate and

protect services. Orchestrating services provides a method to chain services into new and

more complex services (Graham, 549). In the prototype software, orchestration is

employed to join the two raw data service’s (or report-level) sources of data to a fusion

engine which then delivers it to a new follow on service (or track-level). How it is

employed is discussed in greater detail in chapter three. Although promising, not all of

the technologies are widely adopted and mature. The more mature technologies such as

Service A
“Requestor”

Service B
“Provider”

Service
Registry

Publish
Service
Info

Discover
and retrieve
service info

Exchange
Data

1
2

3

 13

those in the transport, messaging, and to a limited extent the description layers of the

interoperability stack shown below in Figure 4 as adapted from Graham’s Building Web

Services with Java (Graham, 27).

Figure 5. Graham’s Web services interoperability stack

Examining the above stack, the lower levels are widely adopted by industry, while some

of the advanced functionality layers such as security and Business Process Language are

less mature and industry adoption is limited. HTTP, SMTP are ubiquitous standards and

are the foundations of a number of technology solutions. XML, SOAP and WSDL are

not yet ubiquitous but are gaining acceptance and the compositional and Quality of

Experience types are still limited to early adopters.

The prototype software will reside on the standard SOA web-services platform

similar to the one adopted by the MDA pilot, which currently is the sun application server

or BEA Weblogic. The research began by migrating a “legacy” or non-SOA application

developed by the author and discussed in greater detail in chapter three to a webservice

SOA. This prototype employed the core services of discovery, orchestration and

messaging discussed above to include Universal Discovery Directory Index (UDDI) and

Transports HTTP, HTTPs, SMTP, Ect.

Messaging XML, SOAP

Description WSDL, UDDI

Quality of
Experience

WS-Security, WS-ReliableMessaging

Compositional Business Process Language (BPEL), WS-
Notification

G
enerally Less U

biquitous

 14

Business Process Execution Language (BPEL) to accomplish the data fusion tasks.

Additionally web-service standards such as Simple Object Application Protocol (SOAP)

and Web Service Definition Language (WSDL) will also be employed in the

development.

 15

II. BACKGROUND

A. MULTI-SOURCE DATA FUSION BACKGROUND

In 1991 the Office of Naval Research (ONR) chartered a data fusion development

strategy to guide investment in fusion technology. The research described the process,

benefits and needs for data fusion. The body of work is now one of the authoritative

guides on fusion and provides a good starting point to explain the concepts and

challenges associated with multiple-source data fusion (Hall, 1-8). The ONR working

group defined military-related data fusion as “the function of continuously transforming

data and information from multiple sources into richer information concerning: individual

objects and events; current and potential future situations; and vulnerabilities and

opportunities to friendly, enemy and neutral forces“(ONR, 6). According to the

processing definition, the purpose of data fusion is to take content from two or more data

sources to promote better situational awareness for warfighters and hence make better

decisions, within the Observe, Orient, Decide and Act (ODDA) loop.

Figure 6. ONR Data Fusion Cycle

Operators
And
Systems

Operate on:
-Sensor Data
-Processed Data
-Reference Data

Supports
- Position
- Identification
- Refinement of
enemy info

 16

ONR defines a fusion cycle in which operator’s direct sensors which provides

data that is then fused to produce information about an entity of interest. Figure 6 shows

that cycle. The relevance of data fusion in weapon and Command, Control,

Communications, Computer, and Intelligence (C4I) system engineering has increased as

the number, range and variety of sensors in weapons and C4I systems has increased. A

number of factors have contributed to growing demand for fusion technologies to

include:

• Improvements in technology supporting sensor ranges and sensitivity

• Growing number of sensors as more data types are desired by operators

• Increasing reporting rates due to proliferation of Internet Protocol based

sensors

• Growing operator demand due to wartime requirements and Homeland

Defense missions.

The ultimate military objective for data fusion is improved mission effectiveness.

Data fusion contributes to mission effectiveness by reducing the amount of irrelevant

data, improving information for decision-making and improved use of available weapons

and sensors (ONR, 12). Data fusion priorities change depending on the position of the

decision maker. A unit or individual ship operates in a low-volume, high-paced, limited-

uncertainty environment, driving users to need increased accuracy to deal with the more

limited choices that operators encounter. A strategic-level decision maker has a

significantly greater volume of data, of greater latency and uncertainty than unit-level

decision makers and hence requires greater inferences (ONR, 16). Hence we can make

the argument that there is greater potential for benefit from fusion for strategic-level vice

unit-level decision making. The requirement for strategic-level decision should be taken

into consideration when formulating the data strategy and architecture for building a

framework to support automated data fusion.

 In 1986 the Joint Directors of Laboratories (JDL), which today is the Office of

Naval Research (ONR), established a fusion working group to standardize terminology

 17

and build a common model for data fusion (Hall, I7). The working group created a

functional model with the four levels shown in figure eight below. The JDL panel defined

four levels of fusion in the Data Fusion Domain: Level One Processing or object

refinement, Level Two Processing or situation refinement, Level Three Processing or

threat refinement, and Level Four for process refinement.

Figure 7. JDL Fusion Process

B. PREVIOUS SOA WORK IN THE ISR DOMAIN

The defense sector of the U.S. economy has already invested heavily in

examining SOA as a method to increase efficiencies and interoperate with an array of

legacy systems. Some view SOA as the next wave of “code reuse,” where services are

abstractions of classes in object-oriented programming. One central difference is the

potential for services to be dynamically bound at runtime by an orchestrating entity (Erl,

448). Many DoD strategists believe a crisis is looming in the future as the complexity of

systems and missions increases, while the number of individuals to complete those tasks

Level 0
Processing
Signal
refinement

Level 1
Processing
Object
Refinement

Level 2
Processing
Situation
Refinement

Level 3
Processing
Threat
Refinement

Level 4
Processing
Process
Refinement Support

Database
Fusion
Database

Data Base
Management System

“Sources”
Sensor
Data
Surveillance

Entity

 18

decrease (Bennette, 54). As the complexity and speed of the problems humans deal with

increases, there is a tendency within the DoD to rely on software to solve those problems.

Looking at the JDL fusion process above (Fig 7), we are looking more towards systems

to automate Level Four processing.

For example, in the present conflict in Iraq, many disparate agencies are charged

with the mission of reconstructing critical infrastructure and providing security. A

complete view of the battle space is critical to providing visibility to these resources as

well as traditional items of military significance. Resources in the case of reconstructing

Iraq potentially include water treatment facilities, roads, electrical substations or other

parts of a nation’s infrastructure. However, present C2/common operational picture

(COP) tools are normally track- or target-centric, limiting visibility of these resources

because these items were viewed as tertiary parts of the battle-space. These non-military

resources become increasingly relevant as a conflict progresses beyond combat

operations to nation building or operations other than war (OOTW).

 Furthermore, the conflict in Iraq demonstrates the requirement for military C2

systems to interact with a far wider source of content than ever before. U.S. military

assets not only operate with the defense forces from other nations, but work with law

enforcement agencies, intelligence communities, non-governmental organizations

(NGOs) and private security firms in supporting the reconstruction and nation-building

agenda in Iraq. In many cases the U.S. military provides quick-reaction forces and

medical evacuation across the entire battle-space to numerous private security firms and

coalition partners. Due to the classified nature of military position and planning data,

sharing data between unclassified private C2 systems and military systems remains

difficult. Beyond the security issues remain technical hurtles associated with the various

proprietary military and commercial systems. The result of the limited data exchange

architecture is cumbersome and inaccurate reporting, in addition to delayed reactions to

events.

The preceding examples typify some of the wide spectrum of interoperability

challenges posed by the diverse requirements for information on the modern battlefield.

Figure 9 below represents the requirements overlap between domains. Future warfighter

 19

support requires interoperability in a rapidly changing environment; an open and

distributed architecture demonstrates potential to provide the architecture to address that

requirement.

Figure 8. Chief of Naval Operations strategic focus areas with system overlay

C. COMMAND AND CONTROL/INTELLIGENCE SURVEILLANCE AND
RECONNAISSANCE BACKGROUND

 In the 1960’s a transformational force enabler was born from the requirement to

rapidly and accurately coordinate naval forces and their weapons systems over a wide

area. That system is the Tactical Digital Information Link (TADIL), more commonly

known as LINK-11/16 (Logicon, 3). Far advanced in complexity and potential of

previous C2 systems, TADIL permitted the rapid allocation of resources to meet

emerging threats or offensive requirements and dramatically increased the pace of

operations. The TADIL Link today remains the premier air and surface warfare (SUW)

fighting network, extensively used in recent combat operations in Iraq. Although

Major Combat
Operations

Homeland
Defense

Stability

Ops

 GWOT

C2-SOA Initial
Requirements-
Maritime
Domain
Awareness

Current C2 Systems

 20

compelling, LINK-11/16 has some significant disadvantages over alternative systems

today. These disadvantages listed below inhibit enhancements, increase cost, and

discourage extensibility.

• Hardware specific (software is tightly coupled to hardware)

• Strongly typed software (no runtime enhancements)

• Tightly coupling: interoperability was difficult due to lack of common standards

• No convention for multilevel security (supports coalition warfare)

• Lack of common standards inhibited auto fusion and correlation of disparate data

sources (TADIL format does not stem from open commercial standards)

Many of these were technological limitations associated with the hardware of the time,

and the endurance of the system over the years is a tribute to the engineers who build it.

The central tradeoff was performance versus extensibility. The code and hardware

interface was clean and efficient in its use of memory and bandwidth, with extensibility

being sacrificed for performance.

1. Emergence of PC-Based C2 Systems

In the early 1980s a growing personal computer market emerged from the existing

mainframe industry. During that period the Navy began experimenting with PC-based

tactical decision aids (TDAs). TDAs focused on automating computationally intense

operations such as generating optimal search plans and had limited user acceptance due

to the complexity of user interfaces and poor integration with existing C2 systems to

provide the “true” environment. To address these shortfalls, the TDAs began interfacing

with C2 systems via a passive tap to populate the TDAs with pseudo real-time pictures of

blue and red force units.

 As often happens with technology, customer use of TDAs rapidly departed from

the system designer’s original intent and began to be employed as a C2 system. The

intuitive map, rudimentary routing (navigation voyage planning) capabilities and

relatively easy to use interface stood in stark contrast to the existing link user interfaces.

Along with the growing need for PC-based TDAs, a growing niche emerged for a PC and

 21

Internet Protocol C2 tool that was portable to an ashore or afloat command center and in

some cases operated at the theater level (vice link pictures that operate more locally at the

tactical level) and could operate independently of a link architecture. At the core of this

system is a database residing in volatile memory known as track management system

(TMS). As user adoption increased, additional requirements emerged to support injection

of national-level intelligence and surveillance data into a COP, further driving

requirements away from a monolithic system towards a collection of systems operating

under a common user interface.

2. The Common Operating Environment

In response to dramatic growth in adoption of PC-based C2 systems in the mid

1990s, the Navy led an effort to neck down the number of applications the warfighter had

to touch and provide a common interface for a wide array of tool sets and data. The result

of this effort is the Common Operating Environment (COE), based on the original Joint

Operations Terminal (JOT) that migrated to the Global Command and Control System

(GCCS) based family of TDAs and data sources consolidated into a single product line

(Engel, 3). A number of dynamics were at play during this period that significantly

impacted the present product line of PC-based C2 systems. These factors include:

• Reduction in hardware costs due to commercial market forces

• Reduction in DoD funding

• Reduction in number of defense contractors due to industry consolidation

• Dramatic increase in afloat bandwidth and PCs from the IT21 program

• Adoption of platform-independent programming languages

• Wide-scale commercial adoption of web-based hypertext protocol services

These factors converged on an acquisition community fielding calls for greater

transformation and an increasingly technically savvy user group. The resultant product,

GCCS-M COE, or specifically for the maritime user, GCCS-M (3.X), has a client-server

architecture and an IP-based synchronization tool that maintains a multi-carrier strike

group/theater-level COP. At its core remained a single database, Track Management

System (TMS) and executed its requirement for theater-level COP by mirroring the TMS

 22

database using a tool called Cop-Synch tools (Engel, 3). Figure 2 demonstrates the

complexity of the COE and its wide user base.

Figure 9. The GCCS Common Operating Environment Architecture

Presently an upgrade to the GCCS-M system is in the process of fielding. The GCCS-M

4.X upgrade improves user interfaces, makes the Clint code PC vice UNIX compatible

and provides some web-based clients and access to TMS. Although an improvement in

usability and porting to a new client hardware system was completed, no dramatic

changes to the architecture were made. The system maintains TMS at its core, making

integration of new services and clients slow, costly, and track-centric. To improve

warfighter situational awareness the next generation system must break the present

functionality into discrete standalone services that are dynamically discoverable and can

 23

connect/disconnect post run-time. An example of an architecture that supports those

goals is a Service Oriented Architecture.

D. POTENTIAL OF SERVICE-ORIENTED ARCHITECTURES

The commercial Internet has dramatically impacted communication and business

processes in both the military and commercial world. However, the commercial world

has different data models and requirements than a military user, prohibiting a one-to-one

mapping of requirements. The military, and in particular the afloat user, maintain

different quality-of-service (QOS) levels, an exceptionally wide array of data types, and a

complex and rigid acquisition process. Additionally, the political factors associated with

the use of public funds further impedes the process of system development and adoption,

creating the present day lag between commercial and military systems.

 There are numerous motivations for adopting a SOA in the C2 environment, but

none of them are more compelling than extensibility. Extensibility for C2 systems is the

ability to incorporate new data sources, clients and tools that manage and manipulate the

data without recompiling the code. For example, how complex is the integration

environment, how well documented are the interfaces, and what are the security hurdles

imposed by the framework. In short, extensibility is the process of expanding the

architecture to other sources of data and clients, and is a metric of how high the barrier of

entry truly is for services to join the SOA. Extensibility in the past has often been a

tradeoff with performance. However, there is less need for a tradeoff, as network

bandwidth increases and microprocessors become more powerful.

Beyond extensibility, benefits of a SOA permit a restructuring of how C2 systems

are acquired, by mitigating some of the roles a core integrating prime contractor filled

and enabling greater competition. Additionally, resources can be made available for

more tailored applications that work among the systems subscribing to the SOA. Some

additional high-level requirements for the next generation COP operating on an SOA

includes:

• Non-proprietary code for central communications methods and data

models

• Industry-based standards

 24

• Security

• Platform independence

• Interoperability with real-time systems (e.g., two-way interface with

Combat Systems and Tactical data links “TADIL”)

• Support for IP-based collaboration

Along with the benefits comes greater responsibility on the government acquisition

community and operators to manage the SOA. However a tangible improvement in

capability will result as the barrier of entry is lowered and more attention is focused on

the issues.

 Presently numerous DoD agencies are adopting SOA as a vehicle for enabling

their respective Net-Centric vision. Along with the other services, the Navy’s FORCEnet

vision has also embraced the SOA concept to increase speed of command and reduced

costs due the extensible nature of SOA (SECNAVINST, 5). In the late 1990s, Navy

Research and Acquisition commands recognized the potential flexibility Publish and

Subscribe (PUBSUB) SOA offered C2 systems and began research efforts to translate

those visions into reality. As network technology matured, Message-Oriented

Middleware (MoM’s) emerged as a key enabler for SOA along with Simple Access

Object Protocol (SOAP), over Hyper Text Transfer Protocol (HTTP) networks, as well as

emerging Enterprise Service Bus (ESB) technologies.

E. SERVICE ORIENTED ARCHITECTURES BACKGROUND

Numerous definitions of Service Oriented Architectures exist. One definition

(Barry, 2004) is simply “a collection of services” that can pass data and communicate

with each other. Paul A. Moore defines SOA’s more rigorously, with ten design-time

and eleven runtime characteristics. Developers often examine the quality and maturity of

the components and design and look directly down to the XSD (XML Schema

Document) of the messages being passed to see if they are structured with extensibility in

mind. A factor of extensibility can be affected by the granularity of the XSD. For

example XML elements like <Latitude> / <Longitude>, or <Location>, or perhaps the

 25

data is binary. In the former the data element can almost directly be used by a program

without much effort. In the latter, it may imply that further parsing of the data may be

required. Which path is utilized depends on the system requirements, where the burden of

further development is shifted from one developer to another (e.g., database developer to

visualization developer). Hence we see two central metrics for quality of SOA’s

emerging: Extensibility of messaging (both in messaging systems and content of

message) and Independence of systems service components.

 Barry (2004) states that communication may be in the form of either simple data

passing or could involve two or more services coordinating some activity. SOA is not a

new concept (Barry, 2004, p.1). The first widely adopted SOA is DCOM (Distributed

Component Object Model [Microsoft]) or Object Request Brokers (ORBs) based on the

CORBA specification (Barry, 2004, p.1.). A service is a function that is well-defined,

self-contained, and does not depend on the context or state of other services (Barry,

2004). For services to be accessible a method is needed to make a connection to access

the service. One technology currently employed to connect services is Web Services.

Web Services refers to the technologies that allow for making a web-based connection

such as Universal Description, Discovery and Integration (UDDI) for discovery, Simple

Object Access Protocol (SOAP) for passing an XML document, Business Process

Execution Language (BPEL) for orchestration and XML for content. A service is the

endpoint of a connection, with a type of underlying computer system that supports the

connection offered.

 As discussed above, independence of system service components is another level

of analysis that compares an SOA is in terms of how “componentized” their services are.

In essence the metric measures how well-defined, discrete, and self-contained the

services are which translates to greater ease of integration with other systems. For

example, are the services modular enough in the sense of what would it take to replace

the service with a better service? Ideally, SOA services are very well-defined and self-

contained, can be easily replaced and follow a type of plug-and-play, drop-and-replace

structure. In summary the following top-level attributes of an SOA are (Barry, 2):

 26

• Well-defined components

• Self-contained components

• Connectivity between internal and external processes

In the next section we will discuss some of the foundation technologies of SOA in greater

detail.

1. Extensible Mark-up Language (XML)

XML is emerging as the “content” of choice for DoD applications. Poorly suited

for use over previous networks, due bandwidth limitations, XML is gaining traction now

that bandwidth has increased and system extensibility and connectivity are becoming a

higher priority. Until recently, XML was not a viable medium for the DoD until

processor speeds and bandwidth reached a level where performance met the levels of

preexisting legacy systems. Presently, processor speeds and network capacity are

reaching the point where costs in performance are worth the gains in extensibility.

XML is an extensible version of Hypertext Markup Language (HTML). Designed to

permit developers to define the model or schema desired dynamically and share the

model without reconfiguration. In many ways, HTML can be thought of as a small

version of XML focused on display, while XML is concerned with more varied uses of

data. XML is however very structured and unambiguous permitting its use in DoD

systems.

The compelling reasons for DoD adoption of XML stem from its platform

independence and its non-proprietary nature. In Command and Control systems, common

XML schemas have tremendous potential to create a common language between sensors,

weapons and visualization clients. Of greater importance is the capability for expanded

fusion, correlation and automatic data management. XML allows the proliferation of

fusion services throughout the net to automatically compare disparate data from far flung

sources to build a better Common Operating Picture. For example data from a National

ELINT source with thousands of reports can be published to a topic that is both

discoverable and “subscribeable” by a fusion service that is also subscribing to a TADIL

track feed for auto correlation. The product of the fusion service is then published to a

 27

new topic each of which can be subscribed to by a visualization client, event manager or

tactical decision aid. Although fusion algorithms can be built that can read the tab37

(standard) format for the ELINT and the MTC (LINK) format for the TADIL data, the

service becomes extremely unique and tightly coupled. By utilizing XML as the common

language the task for fusion service developer becomes simpler and can therefore focus

on better algorithms vice reading the data and exception handling.

Beyond fusion, XML permits a standard language for visualization clients to

integrate simplifying design for the presentation layer as well. The Navy should however

be wary of anyone selling the “definitive” model for everything. XML schemas of that

size become poor performers with much of the content of limited utility to the subscriber.

A one size fits all schema runs contrary to the philosophical underpinnings of XML.

Better to use XML provided translators (XSLT) than attempt to create an “Uber

Schema.” From an anecdotal perspective the Office of Secretary of Defense, National

Information Infrastructure office sponsored a Horizontal Fusion track working group to

develop a “track schema” to satisfy all the participants. In reality it satisfied no one and

was mocked from inception by developers working on the project. Another schema

project is C2IEDM, even more ambitions than Horizontal Fusion, this organization born

from the concept to define DoD “entities” in a relational database schema, the

organization has gained traction as a XML schema provider. Supported by the North

American Treaty Alliance (NATO), C2IEDM does not map seamlessly to XML, leaving

a lot to the imagination of developers and may not deliver the promise of a DoD wide

XML definition for Command and Control. Developers need to continue to build tools

that are as schema independent as possible and keep an ear to the ground for emerging

XML standards to use them when they make performance and extensibility sense.

2. Message Oriented Middleware (MoM)

 In more ways than other services, the Navy is a “messaging” culture. Stemming

from the asynchronous nature of the afloat environment, where ships and submarines

were only available to communicate during limited periods of time (e.g. in-port, within

visual singling range, at periscope depth). This culture, and in reality a limitation that

exists to this day to a lesser degree, drove many of our communication systems and our

 28

very fighting doctrine. Many of our systems are serial feeds, and broadcasts that do not

assume quality of service on the receiving end. As a culture, the Navy values concise,

directive communications in the form of “message traffic” whose authority is validated

by the complexity of getting the object “on the wire” and the penalties for misuse of the

broadcast. Potentially, this makes Navy Command and Control systems good candidates

for Message oriented Middleware.

In contrast to developers making their own stove-piped system from physical

transport medium to application, JMS continues the trend of greater development

abstraction. Here the abstraction is instead of programmers writing their own network

socket code for both producers and consumers of data, MoM’s permit developers to place

the data on “Topics” and “Ques” allowing any subscriber to access the data required.

Hence DoD specific developers time is spent on developing the defense specific system

versus the software to communicate between application. No capability is free of

tradeoffs in resources or performance and MoM is no different. MoM requires vendor

specific servers, server software and costs in network performance. The major two

vendor specific MoM’s (.net and JMS) are discussed below.

Java Message Service (JMS) is a standard created by Sun Microsystems for

enterprise wide messaging. Incorporated into Sun’s Java 2.0 Enterprise Edition, (J2EE)

the technology entails establishing an enterprise wide messaging bus via a JMS Server for

applications, databases and event managers to share data while still running

independently. For example, in contrast to building a business wide “single application”

much like SAP, Sun envisions accounting programs, marketing/sales programs, inventory

management, etc, all developed and operating independent, but sharing data in a standard

asynchronous manner. Referring to the figure below the JMS service is intended for

application info sharing and not just exchanges between clients and databases.

 29

Figure 10. J2EE Technology Stack

The architecture of the JMS Enterprise bus is not functionally a client server model (all

messages must process through a JMS message server, but do not have to go through the

data source central services) but conduct communications in a pier to pier fashion. The

JMS Server has agents that run in conjunction with system end points that manage the

communication in a decentralized manner.

Hardware

Operating System

Java Virtual Machine

Web Hosting System

SERVLET
EJB

Java Messaging
Service

Applications

 30

Figure 11. Reference JMS Afloat Architecture

In the diagram above we have an example of a reference “Navy” JMS instance. In the

model each service or endpoint utilizes a MoM, message agent that handles defining the

destination, priority and quality of service required. Some of the key attributes that make

JMS a compelling solution for DoD and in particular Navy afloat Command and Control

system network connectivity include the following attributes:

• Supports both JAVA and non-JAVA message payloads

• Supports both intra-service and service to service communications

• Supports asynchronous data transfer between nodes

 Although Microsoft leads the Personal Computer Operating System, healthy

competition still exists on enterprise level software solutions such as Message oriented

Middleware. Comparing the two systems technologies stack, .NET has similar

mechanisms as JMS for message exchange (Shiel, 2). For example, .NET supports a

wide range of the quality of service attributes to match JMS and in particular has superior

 LINK
Tracks

AirWar
COP

Elint
Reports

Elint
Tracks

ASW
COP

GMTI
Reports

ASW
Reports

GMTI

Reports

 ASW
COP

M
oM

 31

development tools and strong Multilanguage support. The downside to .NET is its single

vendor approach, questionable security and limited multi-database support. The diagram

below demonstrates the relative position of messaging on the .NET stack, similar to the

JMS model. How .Net handles messages and provides a distributed environment is

similar and most of the discussion above applies.

Figure 12. Net Framework Technology Stack

3. Orchestration and Discovery

Although the messaging and XML data standards lower the barrier of system-to-

system integration, the real benefits to be accrued of having independent services are

realized when services can be reorganized to respond to changing requirements after

runtime, which is one of the promises of discovery, and strung in a string of services as

provided by orchestration. At present there are two standards for orchestration that are

competing with each other: Business Process Execution Language (BPEL) and *WS

Orchestration. Discovery or XML based registries are provided by both ebXML standard

from OASIS and Universal Discovery Directory Index (UDDI). The dissertation

prototype employs a BPEL engine provided by Sun Microsystem.

Hardware

Operating System

Managed Code

Framework Class Libraries

ASP .NET

.NET Framwwork

 32

THIS PAGE INTENTIONALLY LEFT BLANK

 33

III. TRICKLE-UP AND ZONE SOFTWARE DESIGN PATTERNS

Christopher Alexander defines design patterns as a method to “describe a problem

which occurs over and over” (Gamma, 2). Relating the constructs Alexander was

referring to in the construction industry, Gamma et al; apply the framework to object-

oriented programming, by articulating a series of repeatable software patterns. As

discussed earlier, SOA is in many ways an abstraction of object oriented analysis and

designs (OOAD) and hence can benefit from object-oriented pattern constructs as well as

new ones. Additionally, since SOA is different from object-oriented programming, one

would expect patterns to emerge to capitalize on SOA (Buschmann, 30).

Gamma describes four essential elements of a pattern: pattern name, description

of problem, description solution, and consequences from applying the pattern (Gamma,

3). Following the methods proposed by Gamma, we will describe the two patterns

developed in this dissertation, in the following section using the pattern essential

elements. Each pattern discussion includes; intent, motivation, applicability, structure,

participants, collaborations, consequences, implementation, sample code, known uses and

related patterns. Additionally, Gamma provides an organizational structure to patterns

into three general purposes (i.e, creational, structural and behavioral) and scope (class or

object). In this section we will discuss two new software design patterns proposed in this

research, and employ Gamma’s techniques, with some modifications to align with SOA

constructs, to describe them.

A. TRICKLE-UP SOFTWARE DESIGN PATTERN

At first glance, the trickle-up design pattern appears as a simple n-tier construct,

with three levels (i.e., atomic, refined and entity) that generally map to the knowledge

management constructs of data, information and knowledge. The difference however,

stems from the aggregate nature between the levels and the relationships between the

objects or source services and the processing algorithms. The trickle-up pattern has its

roots in a data model developed by Dr. David Engel, known as the ISR Three-Tier Model,

while working on the eXtensible Tactical C4I Framework (XTCF) at the Space and

 34

Naval Warfare System Center in San Diego (Engel, 3). The data model was an artifact in

the XTCF system design document to introduce developers to a construct where data

sources, fusion logic and presentation systems where no longer tightly coupled in a single

system, but resided in a loosely coupled SOA. In this dissertation the three-tier model is

explored beyond the original construct, migrated to a pattern and beta-tested in a

prototype. The following sections describe the trickle-up pattern using Gamma’s

structure, with modifications provided by Erl to relate the pattern as a SOA design pattern

vice an object-oriented design pattern.

1. Pattern Name

The name of a pattern should convey as much as possible the intent of the patter,

allowing communication of the topic to speed understanding (Gamma, 3). In the case of

this pattern, the phrase trickle-up refers to a concept where water would slowly flow up

against the pull of gravity to nourish a plant. The phrase reflects how actions at the

bottom of a layered structure can aggregate over time to impact higher layers of the

structure. Trickle-up is normally associated with two strategies unrelated to software.

The first is a strategy the New York Police Department (NYPD) adopted to address crime

by aggressively prosecuting petty crimes with the hope that a general “lawfulness” will

reduce all types of crime. The second strategy refers to a method adopted by relief-aid

agencies to encourage small businesses with micro-loans to tackle chronic poverty. The

trickle-up pattern follows this analogy with the concept that data from the bottom is fused

with other data to migrate up to create information of greater value.

2. Pattern Intent

Intent provides a concise description of the pattern. The trickle-up pattern

provides a multi-tier abstraction in which both source data and fusion logic are

independent services and defined in a manner to enable runtime binding to facilitate an

aggregate approach to control and monitoring services software data management.

 35

3. Pattern Motivation

Control and monitoring software systems can use remote sensors to collect data

about the environment, analyze it and make a report to a consumer. Traditional systems

employ tightly coupled methods to pass the data, limiting the reuse of the content and

creating a classic “stovepiped” system. Utilizing web-based SOA technologies and

standards, one can construct a framework in which individual data managers can

autonomously provide persistence and be employed by any consumer to include a service

that performs analysis on the content. This supports the concept of low or “loose”

coupling which reduces the dependencies between modules to improve flexibility in a

software system (Erl, 37). The central motivation for using the pattern is flexibility.

Flexibility in this case is the ability to add, remove or modify both sources of data and

methods of analysis as the system matures.

Consider a system for a medical enterprise with a number of hospitals. To

optimize operations the medical enterprise has various types of information systems, such

as medical diagnostic monitoring systems. A diagnostic monitoring system has numerous

sensors that report on the health of a patient, such as blood pressure, hearth rate and

temperature. As new sensor types become available, the content can be made available to

any number of other systems, such as diagnostic rules-based engines or algorithms for

taking readings from any number of sensors to recommend treatment. These systems can

link with the pharmacology department to ensure the wrong drugs are not administered,

or a personnel manning system to ensure the professionals with the right set of credentials

are on station when required. This complex system of systems benefits from the agility

of the trickle-up pattern, allowing the adding of atomic, complex or entity sensor

information service in a correct category and allowing the pairing of data services with a

diagnostic service after runtime. The services can now be changed together with an

orchestration engine dynamically in a process. Next we will talk about how this pattern

is applied.

 36

4. Pattern Applicability

Use the trickle-up pattern when

• You want loose coupling between sensor and application services, with

both types of services being configured during runtime in response to

changes

• You want multiple “fusion engine” or other processing-logic services to

connect at runtime, allowing optimization of the fusion process by

employing the best service components (e.g. algorithms) at that point in

time

• Your target software is a distributed system and has a range of data objects

that vary in complexity and higher order information is derived from

combining data from various sources.

 In the next section we will discuss the patterns structure.

5. Pattern Structure

The trickle-up pattern articulates a structure where individual services data are

combined to improve awareness. The basic building block of the pattern is an object

manager service (OMS). The OMS takes the input from a sensor, then both normalizes

and saves the data. The OMS provides two general methods to obtain values: one static

and another event-based. The former may report results based on values provided, while

the latter provides a continuous updating of subject of the OMS. An eventing based

update is a continuous subscription like an audio stream or broadcast, where the

consumer remains connected to the OMS and awaits updates. The OMS is autonomous

and maintains its own history. Additionally, the OMS is registered in a discovery service

making it available for use by various customers. Figure 13 below details the OMS. The

figure uses SOA service notation style adopted by Erl (Erl, 497).

 37

Figure 13. Basic Object Management Service

The second type of building block in the trickle-up pattern is the data fusion

service (DFS). DFS utilizes the data content from multiple Object Management Services

(OMS) for analysis purposes. DFS has two inputs (one for each OMS) and an output that

provides the new objects created for input into a new OMS. The DFS does not have its

own persistence and does not maintain a history of its actions, but rather provides its

output to another OMS. The method executed by the DFS is performFusion; this method

takes the values provided by the OMS inputs and performs the fusion, creating a new

output which in turn flows to the output OMS. Figure 14 below diagrams the DFS.

Figure 14. Data Fusion Service

Object
Mgr Service

Sensor input

Data-Store

Static Input
Values

Static Output
Values

Eventing
Output

• getValue
• receiveValue

Data
Fusion ServiceOMS Input 1
• performFusion

OMS Input 2
Output to OMS

 38

 With the two main building blocks defined, we can now assemble these blocks to

specify a complete trickle-up pattern. Applying a brick and mortal analogy, the OMS is a

brick and the DFS is cement, in a building. There are three general types of OMS

“bricks”: atomic, complex and entity, which are joined using the DFS cement. Assembled

in a reference framework, the trickle-up pattern looks like a pyramid with atomic data at

the bottom, complex types in the center, and entities at the top. As shown Figure 15, the

arrows point upwards because data from the lower level objects migrates upward as the

complexity of the data increases. Some additional relevant concepts regarding the pattern

are:

• The pattern does not require that all data “start” at the atomic level, but can in

fact join the pattern at the appropriate level of complexity.

• The pattern does not require that all DFS’s must subscribe to two OMS’s.

Many circumstances exist where a DFS may subscribe to a single OMS with

different parameters.

• Some OMS’s may never need fusion.

 39

Atomic

Fusion

Complex

Fusion

Entity

E1: OMS E2: OMS

F3: DFS

C1: OMS C2: OMS C3: OMS

F2: DFSF1: DFS

A1: OMS A2: OMS A3: OMS A4: OMS A5: OMS

Figure 15. Trickle-up Software Design Pattern

In Figure 15 above, “A” annotates an atomic OMS, “C” annotates a complex OMS and

“E” annotates an entity OMS. The term “F” on the diagram represents a DFS.

To further explain the trickle-up pattern, a UML structure diagram is provided in

Figure 16. The pattern comprises two “object classes”, the OMS and DFS, described

earlier in this section. Two broad categories of OMS exists; composite which has both

complex and entity type objects and atomic. The DFS has two broad categories, based on

Bowman’s defined types of fusion algorithms, relationship and attribute (Bowman, 2-4).

The OMS has a data store, but the DFS does not. Note that an OMS can exist without a

DFS, however a DFS requires at least one input OMS and one and only one output OMS.

In the diagram, a DFS ingest of content from an OMS is called preprocess, and the output

of the DFS to another OMS is called a postprocess. Additionally, the diagram details

how a DFS does not postprocess down the pattern, in other words, a postprocess cannot

write to an atomic level OMS described earlier in this section.

 40

Figure 16. UML Diagram of OMS and DFS

6. Pattern Participants

Participants are the actors in the pattern. For the trickle-up pattern the participants

include:

• Atomic Level Object Management Service

 Defines interface from sensor/source

 Implements the persistence of atomic objects

 Defines the interface for static atomic object requests

 Defines output of static atomic objects

 Implements the reporting of event-based atomic objects

• Complex Level Object Management Service

 Defines interface from sensor/source

 Implements the persistence of complex objects

 Defines the interface for static complex object requests

 Defines output of static complex objects

 Implements the reporting of event-based complex objects

• Entity Level Object Management Service

 41

 Defines interface from sensor/source

 Implements the persistence of entity objects

 Defines the interface for static entity object requests

 Defines output of static entity objects

 Implements the reporting of event based entity objects

• Data Fusion Service

 Defines the inputs from partner OMS

 Implements the fusion algorithm

 Defines the output to partner OMS

7. Pattern Collaborations

The trickle-up pattern has a number of collaborations between its consumers,

sensors, data managers, and fusion services. The two main collaborators are the OMS

and the DFS. Using a sequence diagram format, we can map the relationships of the

pattern in a similar fashion to that described in Larman (Larman, 141). First we will

show the OMS sequence followed by the DFS.

Figure 17. Collaborations for OMS

 42

The OMS collaborations execute the following

• The source inputs to the OMS

• The OMS saves the object

• The OMS sends the object to a eventing consumer (optional)

• A consumer such as a DFS or other, requests objects and has them

returned

For the Data Fusion Service (DFS) we have a similar set of collaborations..

• Sources are sent to the DFS

• DFS creates the object

• DFS fuses the sources and makes a new object

• DFS publishes the new object

Figure 18. DFS Collaborations

Note the sources of the DFS are OMS’s and the new objects are posted to a new instance

of an OMS. The significance of this is to stress that a DFS cannot serve a customer

directly and must provide its output to an OMS.

 43

8. Pattern Consequences

The trickle-up pattern is a fundamental technique for reusing fusion and data

source code in a SOA. The pattern presents a view of the control and monitoring

software domain sources into two main categories: data managers and fusion processors.

Within the data managers, three categories of complexity are defined by complexity of

data: atomic, complex, entity. Software reuse is enhanced by separating the fusion logic

or DFS, from the standard “building blocks” or object management service (OMS). The

pattern specific consequences include:

• The pattern requires common data-schemas and definitions to support

“late binding” and orchestration of the OMS and DFS modules in a

SOA

• The sensor/source content has a potential value from aggregation

(combining one object with another from a different period or type).

• The type of content lends itself to a atomic, complex, and entity

construct

• The system has overhead associated with the flexibility it provides

9. Pattern Implementation

 Although the trickle-up pattern has some applicability in a traditional object-

oriented system with interoperability between systems facilitated with an API, the pattern

is geared towards a Service Oriented Architecture framework. Since web-service

technologies are the present method to enable a SOA, the trickle-up pattern discussed in

this dissertation is focused on SOA methods. The trickle-up pattern can be implemented

using Representational State Transfer (REST) or an Enterprise Java Bean (EJB)

framework. The REST is usually a servlet-based system and the EJB employs a SOAP

message with an XML based message body. The EJB construct is aligned with the web-

service SOA-enabled business process execution language (BPEL) methods and is

employed in this research prototype. The REST method in the research here is executed

using Java Servlet technology and is used to provide the mapping service overlays via a

 44

keyhole markup language (KML) interface. These efforts are described in more detail in

the following prototype section. Referring back to figure 13, the EJB or Servlet provides

methods to process static inputs and eventing or static outputs. The dynamic output can

be accomplished with any number of eventing methods such as Java Messaging Service

(JMS), DDS for more real-time systems or WS* eventing. I changed this to 3rd order

paragraph

The following Java code shows an example of an OMS. The basic OMS below

uses the EJB classes which are called @Stateless and @WebService. The class uses a

Java Array list structure and returns values from a database.

@Stateless()
@WebService()
public class basicOMSeJB {
 Database database1 = new Database();
 QueryDataSet queryDataSet = new QueryDataSet();

@WebMethod
public List<object> processBasicOMSeJB(String parameterfirst, String
parameterSecond) {

returnparamOne = queryDataSet(“SELECT * FROM DB
WHERE parameterfirst, parameterSecond”);

returnparamTwo = queryDataSet(“SELECT * FROM DB WHERE parameterfirst,
parameterSecond”);

 return = returnparamOne,returnparamTwo

}

 The second set of java code below show a potential Data Fusion Service (DFS)

implementation. As in the OMS, the java Enterprise Java Bean framework is shown and

@Stateless and @Webservice implements the EJB. Here no persistence is provided

beyond the temporary array list. The DFS takes inputs from two OMS and

conductFusion executes the DFS specific algorithm.
@Stateless()
@WebService()
public class DataFusionServiceFusion {

@WebMethod
public List<combined> isDataFusionService(List<object> objbatchOne,

List<objectTwo> objectbatchTwo){

 45

 List<combined> fusebatch = new ArrayList();
 fusebatch = ConductFusion(objbatchOne, objectbatchTwo);
return fusebatch; }

 The prototype software description in the chapter VIII goes into greater detail of

the implementation for readers who would like to examine a reference implementation.

Additionally, the reference implementation shows the data structures the OMS and DFS

would employ and the orchestration software employed to bind them.

10. Pattern Known Uses

The trickle-up pattern is not employed in any production systems to date that the

author can find; however some aspects of the concept was used by the Space and Naval

Warfare System Center San Diego’s (SPAWAR-SD) efforts in eXtensible Tactical C4I

Framework (Engel, 4). XTCF used the pattern constructs of individual object services

and data fusion services and demonstrated the porting of fusion logic to a basic SOA

construct; however orchestration was not a focus of XTCF and BPEL was not employed.

11. Related Patterns

Trickle-up utilizes a number of object-oriented patterns. The strategy pattern,

where algorithms are encapsulated supports the DFS construct (Gamma, 315) and the

composite pattern supports the broad structure of the OMS as a hierarchy (Gamma, 163).

Trickle-up is often conjunctive with the Zone pattern described in the next section.

Trickle-up provides the foundation data sources for consumption and further processing

by the zone pattern. The next section will describe the relationship between zone and

trickle-up patterns.

12. Pattern Categories

The trickle-up pattern is a structural and object-based pattern. Structural refers to

a type of pattern that focuses on the composition of objects (Gamma, 10). An object

pattern focuses on relationships between objects (Gamma, 10).

 46

B. C2-ZONE SOFTWARE DESIGN PATTERN

In contrast to the trickle-up pattern, the zone pattern is a behavior-oriented

pattern. Behavior patterns are defined by Gamma as methods to characterize object

iteration and distribute responsibility (Gamma, 10). Object iteration and responsibility

distribution in a SOA framework describe how services cooperate to perform a task. The

zone pattern provides developers of control and monitoring systems a view of the

relationship and roles between a consumer of “authoritative” content, a “participant” in a

control and monitoring system, and the sources of content. The pattern makes a

distinction between a participant and consumer in a zone. A consumer is provided the

content the zone manager approves, while a participant is considered a trusted part of the

zone and has access to the entire view. The difference between a participant and

consumer parallels a magazine printer relationship with its fellow writers and readers, in

that the content available to those who work at a magazine (participant) is different than

the finished product provided to magazine subscribers (consumers).

1. Pattern Name

Merriam-Webster defines zone as “a region or area set off as distinct.” The zone

patter provides for the separation of responsibility for communities of interest.

Communities of interest are a group of people or entities with common interests and a

need to collaborate (DoDCIO, 4). The term zone also conveys the authority and

responsibility to accomplish a task, as in a “zone defense” in sports.

2. Pattern Intent

The zone pattern articulates a scalable structure to dynamically manage the three

broad control and monitoring software relationships of source, participants and consumer.

3. Pattern Motivation

A fundamental challenge in control and monitoring system development is to

decide where to place the analyst and processing node in distributed system architecture,

how to manage the updates to content, and how to manage relationships with other

participants in the domain. In a distributed control and monitoring system, the number of

 47

remote sensors, interactions and business logic can change considerably over the lifetime

of the system. The zone pattern supports flexibility in the positioning of the processing

node in the system topology and the resources the node needs to accomplish the task.

Additionally, the pattern supports the concept of separating the automated sources of

information and the role a human analyst may make in validating or updating the content,

along with the notion of ownership of the content.

Consider a national air-traffic management system. The topology changes over

time as new airports are added and air traffic increases. Not only are sensors such as

radars and ground stations for aircraft transponders added to the system, but processing

stations are added shifting responsibility for managing a section of airspace. For

example, an area in a country has had minimal traffic and one facility managed the

airspace. But a new airport was built and air traffic increased beyond the capacity of the

single station and the region was divided into two sections. The responsibility has shifted

along with the resources to manage the airspace. The zone pattern supports the shifting

responsibilities and resources requirement into a distributed control and monitoring

system. In a military construct you can see how the agility is even more critical to support

dynamic wartime requirements.

4. Pattern Applicability

Use the zone pattern when

• You want a loose coupled binding between content sources, participant

and consumer systems.

• Your system is a distributed control and monitoring system for which

expected changes in the system topology are significant enough to

counter expected performance challenges from loosely coupled

software technologies.

• Your system nodes have accountability constructs associated with

them.

Next we will discuss the pattern structure.

 48

5. Pattern Structure

The zone pattern articulates a cellular-like distributed structure, with nodes

managing content and relationships. The basic functions are: persistence, sensor feed

data normalization, data exchange/synchronization management, and consumer

management. The zone pattern consumes the content from the trickle-up pattern and can

have its output posted back to the appropriate tier of the trickle-up pattern (entity-level in

most cases). Figure 19 shows a single zone element.

Figure 19. Zone Pattern Structure

The zone pattern is a SOA construct and the interfaces described above are

enabled by loosely coupled interfaces and XML-based formats. The zone manager

mimics many of the functions of the OMS discussed in the trickle-up pattern, in addition

to both consuming and providing content for the trickle-up pattern. The Zone Manager is

comprised of three general subsystems relating to the main interface categories shown

above: Zone Source Manager (ZSM), Zone Consumer Manager (ZCM), and Zone

Participant Manager (ZPM).

The Zone Source Manager (ZSM) manages the interface between the zone and its

sources, in most cases a trickle-up pattern Object Management Services (OMS). The ZSI

keeps track of any additions or deletions of sources and normalize the data to input into

the persistence. Figure 20 shows the three actions the ZSM manages for adding and

deleting sources, as well as normalizing and mediating the data from source to the

persistent store data model.

Zone
Manager

Zone Source Input

Data
Base

Zone Participant
• zoneSourceMng
• zoneParticipantMng
• zoneConsumerMng

Zone Consumer Output

 49

Figure 20. Zone Source Manager

The Zone Consumer Manager (ZCM) component of the zone manager manages

the consumers of the data in its authorized form. The ZCM output can be consumed by

other zones or other systems in a similar fashion as that used in the trickle-up OMS.

Figure 21 shows the ZCM.

Figure 21. Zone Consumer Manager

The three main functions of the ZCM are adding, deleting and updating a consumer. Note

that the ZCM does not synchronize or take inputs from the consumer, but provides the

content from the zone. This is a critical distinction between the ZCM and the Zone

Participant Manager (ZPM) module. The consumer is just that, a consumer. The ZCM

should however provide a robust capability to keep the consumer updated despite

changes in the network connection and support the loose coupling required by the pattern.

 The ZPM module provides the methods to share the authoritative data with

partners who assist in the management of the content. This is an “un-edited” or “raw”

view of the content vice the “finished” product provided by the ZCM. The ZPM has

similar functions to the ZCM but with the added responsibility of allowing a partner to

Zone
Consumer Manager

Database Feed Output to Consumer • addConsumer
• deleteConsumer
• updateConsumer
• setZoneFilter

Zone
Source Manager

Source Input Output to persistence • addSource
• deleteSource
• normalizeInput

 50

contribute or change the content. The ZPM has three general functions: adding, deleting

and updating participants in the zones, as shown in Figure 22.

Figure 22. Zone Participant Manager

Another way of looking at a participant is as a member of the zone and inside a single

zone. We will close the discussion of the zone pattern structure with an examination of

how multiple zones are structured.

 As discussed previously the zone pattern creates a cellular structure where

individual zones comprised of sources, consumers and participants divide responsibility

and accountability by zone. Figure 23 shows an instance of multiple zone interactions.

The “O” stands for an OMS, the “P” stands for participants, “C” stands for consumers,

and “Z” stands for zone manager. Also note that two zones can subscribe to the same

OMS and provide to multiple consumers. Participants are unique to a specific zone.

Figure 23. Multiple Zone Structure

Z1

P2 O1

O3

O2 P1

C1

Z2

P3 O4

O6

O3 P4

C2

Zone
Participant Manager

Database Feed Output to Participant • addParticipant
• deleteParticipant
• updateParticipant

 51

Figure 24 shows a UML diagram of a zone detailing the relationships between the zone

manager, OMS, data store, consumer, and participant. A zone can have any number of

OMS, consumers and participants. A zone has a data store and can communicate with

another zone or exist in isolation. A zone both consumes the content from none or many

OMS, and can populate a trickle-up pattern as a single instance of an OMS. A zone can

have none or many participant or consumers; however a participant or consumer cannot

exist without a zone.

Figure 24. Zone UML structure diagram

6. Pattern Participants

Participants are the actors in the pattern. Zone pattern has the following

participants. The OMS performs as described in the trickle-up pattern discussed in the

previous section. Additionally, a zone would appear to an outside consumer with similar

attributes as an OMS.

• OMS

 Defines interface from sensor/source

 Implements the persistence of objects

 52

 Defines the interface for static object requests

 Defines output of static objects

 Implements the reporting of event based objects

• Consumer

 Receives event based object updates as directed by the zone

 Receives static based object updates as directed by the zone

• Participant

 Synchronize complete content from Zone to Participant

(participant is a mirror view of zone content)

7. Pattern Collaborations

The zone pattern has a number of collaborations between the data sources it

consumes, the zone participants, and zone consumers. Similar to the trickle-up

explanation in the previous section, we will use a sequence diagram to document the

collaborations. The first collaboration shown in Figure 25 is the OMS.

Figure 25. OMS to Zone Collaboration

Note the Zone can take input from any number of OMS. The Zone source manager then

normalizes the data to match the format of the zones persistence or schema.

 53

 A Consumer is provided content from a zone. The zone manager coordinates

access to only the desired and approved content. The interface between the zone and the

consumer of its content, is shown in Figure 26. Note a zone can have any number of

consumers and a consumer can either be another zone or some other type of consumer.

Figure 26. Zone Consumer Collaborations

For the Participant the collaboration involves two-way synchronization. A

participant can add objects to the zone and needs to remain synchronized with the zone,

as shown in Figure 27. Note the removal of normalization because the content is already

normalized from the data store and the two-way synchronization. A Zone can have any

number of participants, but a participant is mapped to only one Zone.

 54

Figure 27. Zone Participant Collaborations

8. Pattern Consequences

The zone pattern is fundamentally a method for creating a scalable and extensible

control and monitoring software management nodes in a SOA. The zone pattern supports

extensibility by supporting the construct of multiple sources or OMS inputs to the zone.

This zone pattern supports scalability by supporting a cellular like structure that allows

for specific consumer definition of desired data and rapid establishment of partner zones.

Two main differences exist from a system built in the zone pattern and traditional

systems. Firstly, the zone pattern articulates a difference between consumers and

participants in the zone. Secondly, the zone pattern articulates flexibility in the ultimate

topology of the zone structures. This manifests in systems that can respond to changes in

the environment by swapping out sources, partners and participants. This agility is

facilitated by SOA loose coupling, but comes at a cost of performance and the overhead

of using SOA based technologies and bindings. Additional consequences of the pattern

include:

• The pattern requires a common data-schema and definitions to support the

“late binding” of adding sources and consumers

 55

• The desired topology of the target system lends itself to dynamic-authority

constructs

9. Pattern Implementation

Similar to the trickle-up pattern, the zone pattern has some applicability in a

traditional object-oriented software framework; however the pattern is really targeted

towards a web-enabled SOA. Advances in database technologies as well as XML based

transports and messaging facilitates interoperability. Higher order languages support the

application aspects of the pattern such as administration functions, but the interoperability

technology should remain as loosely coupled as possible. Similar to the OMS, a

messaging service can provide the eventing-based data while a static feed via REST

technology can provide the static content.

10. Pattern Sample Code

The following source code snippet contains a XML schema definition (XSD) file

for the data exchange between nodes. Similar to the trickle-up pattern, Java can parse

and read the data. However the critical element needed to employ SOA technologies is a

standard definition of the object being passed. Note the types and names of the data

types being passed.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema version="1.0"

targetNamespace="http://ZoneEJB.sun.com/
<xs:element name="arg0" type="xs:string" minOccurs="0"/>
 <xs:element name="arg1" type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="processZoneResponse">
<xs:sequence>
 <xs:sequence>
 <xs:element name="ZoneObject" type="xs:string" minOccurs="0"/>
 <xs:element name="sigLat" type="xs:double"/>
 <xs:element name="sigLon" type="xs:double"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

 56

The snippet above is a trivial example with elements containing only name,

latitude, and longitude. A true XSD would have a significantly larger data set. The

transport used to exchange the data would most likely be a Java Message Service with a

SOAP message and the above type format in the SOAP body.

11. Pattern Known Uses

Although components of the pattern exist in any command and monitoring

system, the author could find only limited use of the pattern. As in the trickle-up pattern,

some of the zone pattern constructs are employed by the software engineers at the Space

and Naval Warfare System Center San Diego (SSC-SD).

12. Related Patterns

The zone pattern augments a number of object-oriented design patterns to support

its SOA descriptions. It primarily relates to the trickle-up pattern since trickle-up is its

data source.

13. Pattern Categories

The zone pattern is primarily a behavior object type pattern as defined by Gamma,

et al. (Gamma, 10). Behavior refers to the way zone patterns interact and distribute

responsibility, while object refers the relationship between the objects or services in a

SOA framework (Gamma, 10).

 57

IV. APPLYING TRICKLE-UP SOFTWARE PATTERNS TO MDA

An unlimited number of ways exist to define and describe the metadata associated

with military C2. In this research we apply the trickle-up pattern and apply them to

MDA missions. Applying the patterns to MDA, the universe of C2 data is divided into

three tiers as shown in Figure 28: reports (atomic), tracks (complex), and entities.

Figure 28. Trickle-up pattern applied to MDA

The trickle-up pattern provides essential partitioning for ontology definitions in support

of service discovery and allows developers to build systems in support of the role the data

source provides in a greater SOA.

Reports are the lowest most discrete form of content. They are a collection of

facts that alone provide limited information from a single source. Reports in a C2 context

include singleton human (HUMINT), signals (SIGINT), or electronic (ELINT)

intelligence intercepts. For example, an ELINT report would contain details such as a

frequency and line of bearing or for a SIGINT report could contain a voice pattern in the

vicinity of a specific region. Reports are usually limited in scope and duration of

Tracks

Entities

ELINT ACOUSTIC

Reports

GMTI

FUSION ENGINE FUSION ENGINE
TADIL

FUSION ENGINE

SIGINT

 58

coverage and only begin to reveal higher order knowledge when they are aggregated with

other reports or combined with data from other devices. A sample report shown in Figure

27, from a fielded system displays the type of data associated with Reports which include

time, position, source of information, and level of certainty.

Figure 29. Sample Report Object

Reports provide the foundation of C2 system data. The next tier of data consists

of tracks which provide a view of objects of a more actionable nature, built upon the facts

provided by reports. Tracks are the objects normally associated with C2 systems and

usually have kinematics associated with them. For example, a track may be comprised of

a series of ELINT reports that over time reveal the movement and hence the course and

speed of an object. Track objects are also formed from dissimilar reports by means of

data fusion. For example, an ELINT report which reveals an initial position can be

augmented by an acoustic report which further elaborates on the type and intended

movement of the object and hence become a track. This dissimilar report aggregation

and promotion to track relies on a fusion engine to evaluate the reports. There is a

 59

capability to integrate at post runtime a fusion “service” that subscribes to a new report

service to publish a track. Figure 28 shows some of the expanded data elements

associated with Tracks.

Figure 30. Sample Track Window

As discussed, tracks can be generated from a collection of similar reports.

Beyond the kinetics (course and speed are not labeled in, this figure due to different

approaches taken by the developers of the XCOP system, we have values such as Tactical

Significance Indicator (TSI) which prioritizes the track update rate in support of

asynchronous updating. Additionally note the Global Unique Identification (GUID)

field, which uniquely identifies this object. By breaking the GUID into components we

can determine from where the object originated and what system has ownership of the

object.

The highest level of data object in this C2 paradigm is the Entity. Webster’s

dictionary defines an entity as “something that has separate and distinct existence and

objective or conceptual reality.” For this dissertation MDA discussion, entity refers to

data objects with complexity beyond track or report level content. For example, we

combine or fuse a track with a cargo manifest or a signal intercept. These objects

 60

represent an information layer that exceeds the definition of tracks. Perhaps an Entity is a

target folder, with routes, battle-space geometries/overlays and other associated objects

identified along common lines.

 61

V. SOA C2 APPLICATIONS-ZONE COMMON OPERATIONAL
 PICTURE TOPOLOGY

A. ZONE-DEFINED C2 PATTERN

Section one describes the emerging focus on Maritime Domain Awareness

missions in stability operations, global war on terrorism (GWOT), and homeland defense.

These missions drive a different type of Common Operations Picture (COP) topology

than employed in major combat operations. In major combat such as naval carrier and

expeditionary strike group (CSG/ESG) operations, the COP topologies employ traditional

parent-child relationships in which all data is fed to the top-cop node at the top of the

tree. The data is then replicated down the tree in an attempt to synchronize the data

among all the nodes. The hierarchical top-cop topology supports unity of effort and a

common view of the battle-space; however it wastes bandwidth and computing cycles as

it moves data that not all nodes need. Additionally, a hierarchical COP has a diluted

sense of purpose and mission as every warfare mission’s content (e.g. air, surface, ASW)

is mixed into a top-cop database. In contrast, the zone pattern creates a more flexible

COP topology, which allows the commander to tailor the COP for a specific mission by

only sharing content that is necessary for the mission. These concepts translate into

software with two general requirements: data flexibility and ad-hoc partnering, these

terms are discussed in greater detail below. Figure 31 illustrates the difference between

the hierarchical and distributed COP topology.

 62

Figure 31. Hierarchical to Distributed COP

The distributed COP topology described above is enabled by building systems

with two requirements of data flexibility and ad-hoc partnering. Data flexibility and ad-

hoc partnering requirements are enhanced by using SOA technology. Data flexibility in

the case of COP systems is the ease associated with adding and removing sources of

content such as a new data feed or in the case of this research the ability to reach into the

trickle-up pattern or reports, tracks or entities. Additionally, the new services that result

from the auto data fusion process can be another source of data for the COP. Past COP

systems were tightly coupled to the sources of data they managed. In SOA-based COP

systems data flexibility is also defined as the ability to employ and manage a wide variety

of data sources that employ standard data definition and transport technologies. A second

component of the MDA desired COP topology is ad-hoc partnering, which is the concept

of rapidly establishing, updating, and deleting COP data-sharing relationships. Three

general roles exist in a COP which are similar to those in a tactical data link system.

These roles are COP leader, participant, consumer, or silent listener (Logicon, 40). The

following section discusses the interface between the Zone-COP model and the trickle-up

pattern.

A SOA C2 Architecture has two main components: the infrastructure source

components described by the trickle-up pattern and data management components

described by the zone pattern distributed client model. The SOA Zone is the mechanism

Hierarchical COP Distributed COP

 63

by which a user/manager of the system interfaces with the data source infrastructure

described in the trickle-up pattern. The Zone pattern created views from the content in

the infrastructure layer. In much the same way a web browser utilizes the data from the

Internet, the Zone model interacts with the trickle-up pattern. The Zone model manages

the three relationships any C2 system has with its data and communications protocols.

Figure 30 shows a view of multiple zones applied in a reference naval composite warfare

command structure, where AB is the carrier strike group commander, AZ is the anti-

submarine warfare commander, and AW is the air defense commander. Note the three

relationships described the zone pattern, zone-to-client, zone-to-zone and zone-to-track or

data feed.

USS CVN-X (TAO)
USS DDG-Y (TAO)
USS DDG-Z (TAO)
USS CG-X (TAO)

USS CVN-X (TAO)
USS FFG-Y (TAO)
USS DD-Z (ASW-E)
USS DDG-Z (TAO)
USS CG-X (ASW-E)

Flagship (ACDS)
Flagship (ELINT w/ filter Hostile)
BFT (w/ filter Within 500 nm)

MTC
IBS ELINT
GCCS-M

ABAB Zone
to

Track
Feed

Zone
to

Client

DBJDBC

COPCOP

Zone
to

Zone

Zone
to

Client

AZAZZone
to

Track
Feed

DBJDBC

COPCOP
AEAE Zone

to
Track
Feed

Zone
to

Client

Zone
to

Zone

DBJDBC

COPCOP

CXF

CTF X4

USS FFG-X (TAO)
USS DDG-Y (ASW-E)
USS DDG-Z (TAO)
USS CG-X (ASW-E)

HTTP

HTTP
HTTP

CTF TADIL (ACDS)
Flagship (ELINT w/ filter Hostile)
IBS ELINT
Gale Lite

Zone
to

Zone

Figure 32. Zone Pattern applied to Composite Warfare Commanders

The Zone Pattern reflects the three intertwined services that the model must

manage. Those three relationships are: the relationship between the user and the data

sources the pattern requires, the relationship between the zone and other users who

 64

participate with the owner of the zone in the validation and use of the system, and the

relationship between the owner of the data and with other zones who consume the

content. As described in the pattern description section, the third and second relationship

parallels a magazine printer relationship with its fellow writers and readers, in that the

content available to those who work at a magazine is different than the finished product

provided to subscribers. In a C2 COP system, the raw or intermediate views that action

officers are working on is different than the view data that they provided to a commander

or senior decision maker.

 The following central mechanisms enable the realization of the three relationships

described in the zone pattern: visualization, collaboration, and data management. The

visualization layer consumes content and displays it in a usable fashion. Some examples

of visualization include map displays, tables, and graphs. A critical aspect for

visualization is to apply SOA granular tenets and separate the visualization service from

the data management, data source or other services, to ensure the content is not locked

into one presentation mechanism. Figure 18 shows a Google display of Iraq, with

reconstruction-site data displayed on it. Using eXtensible Mark-up Language (XML)

transforms, the data was published from an SQL database to the Google Earth Keyhole

Markup Language (KML) language. Attack data (position, type, time) data was also

made available quickly for display by Google Earth, but is not shown here.

 65

Figure 33. Google Earth Display of Iraq Reconstruction Projects

 The next broad utilization of the Zone Model is collaboration. Collaboration is

the sharing of data between users within the framework of the information system. In a

C2 paradigm, collaboration can be facilitated by instant messaging systems and Voice

over IP (VoIP) systems or collaborative white boards, among others. The essential

component of collaboration design is not hard coding proprietary standards into the

interfaces between the display systems, data management, and the collaboration software.

Open standards such as eXtensible messaging posting protocol (XMPP) offer industry

standards that allow systems to collaborate by passing XML messages with standard

ports and interfaces, supporting SOA design principles. The results of these efforts are

the ability to drag an object in display and share that object with another user who may be

using different display software. The result is a C2 system with a seamless transfer of

content between its collaboration and display system that is not locked into a specific

vendor solution.

 66

 The final utilization of the Zone Model is data management. Data management

provides a number of essential functions and executes much of the heavy lifting in the

Zone model. The Zone Model is the main interface to the Core Services and

Infrastructure. For example, it interfaces with the SOA discovery service to determine

what is available for viewing, provides the persistence for the user views, and manages

the data exchange between the manager and client systems. Let’s examine more closely

the role of the data manger in the Zone Model. Reviewing the roles of the Zone Model

we have 1) zone-to-zone, zone-to-client, and zone-to-data-source data exchange. In each

of these exchanges, it is the role of the data manager to maintain these relationships.

B. CROSS WALK RELATIONSHIP BETWEEN ZONE AND TRICKLE-UP
PATTERN

In order to clarify how the trickle-up pattern and the Zone C2 structure interact,

let’s trace the data elements through a reference implementation. The trace starts from a

report sensor through various auto-fusion gates to an ultimate Entity, which is then

consumed by a Zone Commander and then shared as a published COP. Although some

implementation and supporting technologies are discussed to present the material

coherently, greater detail is provided in later chapters.

Our hypothetical sensor is a remote acoustic sensor in the South China Sea. The

acoustic sensor is a floating buoy, which transmits its reports via satellite IP connection

to a Web Service Server located in Japan. The raw analog acoustic data is segmented

into “Report Topics” parsed by an acoustic sensor into either probable source or

classification of quality. These two topics are now discrete web-services that are

categorized in a discovery index and can be consumed in follow-on tasking. A sample of

an XML document of the content may include:

<Acoustic Report>move this to the next page

< Report GUID>XX-XXXXXXXXX</Report GUID>

 <Report Classification> Possible Sub </Report Classification>

 <Acoustic Frequency> 440Hz </Acoustic Frequency>

 <Bearing> 120 </Bearing>

</Acoustic Report>

 67

Further implementation of XML, messaging and discovery will be discussed later,

however the take away from the passage is how granular the report may be, and how the

complexity of who and how the data will be used later is hidden from the developer of a

system at this level.

In order to demonstrate the utility of the data model, we will employ a second

type of report. In this case we have an unmanned ELINT intercept site, again on a small

atoll in the South China Sea. This device will record the presence and direction of radars

or other emitters and place a report of that emitter on a topic in a similar fashion to the

acoustic report discussed earlier. An example of one of those reports is as follows:

<ELINT Report>

< Report GUID>XX-XXXXXXXXX</Report GUID>

 <Report Classification> Merchant </Report Classification>

 <PRF > 440Hz </PRF>

 <SemiMajorAxis > 1.0nm </ SemiMajorAxis >

 <SemiMinorAxis > .5nm </ SemiMinorAxis >

 <Bearing> 070 </Bearing>

</ELINT Report>

Two independent systems are automatically collecting dissimilar data from two systems.

The persistence of each report is maintained by its own web-service without a priori

knowledge of how the data will be consumed. The data can be accessed by a consumer

via a type of web-service enabled SQL query SELECT *FROM reports WHERE

Classification = ‘Merchant’ or as an event-based topic where each addition is

broadcasted to whomever is subscribed.

 In the example above, two report-level data objects are created by a sensor and

maintained on a discrete web service operating independently to produce a web service.

In the next phase we will examine how the content that, when fused or combined, is

promoted to the track designation in the three tier model. In this phase of the reference

model an Anti-Submarine Task Force Commander in the South China Sea Theater has

established a fusion service that takes the inputs from the two report sources discussed

 68

above to search within specified criteria for possible snorkeling submarine contacts. Due

to the large amount of data, having an operator evaluate the data for matches would be

too cumbersome. Instead the ASW Track Service “subscribes” to the output of the two

track feeds and if it finds a correlation (a feasible object based on an acoustic contact

correlated to an ELINT report with a PRF of a known submarine). This object is

promoted to a track object by the fusion engine which is now available as a discrete web

service. The power of the model is the orchestration of the services in a usable workflow,

with dynamic bindings at run time, but more on that in later chapters.

 In the next phase we have an intelligence analyst evaluating strategic intelligence

across the battlespace. The specialist evaluates open source reporting and other

intelligence reports that relates to a potential adversary’s submarine exercises. The

analyst is not sure who should view this data and decides to conduct a search of all the

track sources for the area of interest. This analyst then creates an entity service that

attaches the intelligence reports to all the track feeds in the area of interest. That entity

data is now available as its own, discoverable, discrete, web-service for use consistent

with the other levels of the tiers. Figure 32 shows the path the data in the reference

model makes.

Figure 34. Trickle-up Pattern Applied

Acoustic
Report
Manager

Anti-
Submarine
Warfare

Acoustic
Report
Manager

Regional
Commander-
COP

Report
Tier

Track
Tier

Entity
Tier

ELINT input

Strategic Intelligence

Acoustic input

 69

 Presently our data has remained in the trickle-up or “service” side of the pattern.

In this next phase, we will discuss how the data is utilized by the Zone C2 pattern. As

discussed previously, the Zone Data manager component does a majority of the heavy

lifting with respect to interfacing the content provided by the three tier data model and is

the first touch point between the models. In the earlier reference model, we now have

four data streams available for discovery: Acoustic Reports, ELINT reports, an ASW

FUSION output and an Intelligence Analysts Entity stream. Looking on a UDDI driven

search panel, made available via the data manager model, the set of available sources

may look like the figure below, allowing the user to select which streams to subscribe to.

Additionally, the sample UDDI diagram below utilizes a check-box interface to signify

the ability to select more than one track feed. The ability to select multiple sources

introduces complexity to the system such as data-ringing and duplicates if a data stream

is selected which is comprised of duplicate primary sources. Mitigating methods such as

global unique identifiers is a SOA challenges.

Figure 35. Sample UDDI Display

By selecting the track feeds above, the Zone data-manager now has determined the

sources of data used to create the COP. We now have established one of the three

relationships described in the Zone model. How the data is distributed and validated is

the topic in the next section.

UDDI DISCOVERY VIEW

 Acoustic Report Pacific
 ELINT Report Pacific
 ASW Fusion Track

Pacific
 Intel Fusion Center

Entity Pacific
Search:

 70

 The remaining relationships discussed in the Zone pattern include zone-to-client

and zone-to-zone. In the previous section, the content data has migrated from the limited

report type through a fusion service and ultimately to an Entity Manager. At each stop of

the tier, value-added content was added to improve awareness for its ultimate consumer.

It is critical however to maintain the ability to obtain data from each level independently,

to support other uses of the content. In the reference implementation under discussion,

our Zone user has selected all of the data feeds available in the directory above. The user

now has an initial COP, based on those sources. Thus, it is now time to add further value,

share and collaborate on the view. The sources now have a local copy maintained in the

user’s system and that data is available for viewing via an open standards based

XML/messaging interface. The operator now has an opportunity to make changes to the

data, or perhaps execute user-based fusion and correlation activities. The commander

now has two views of the battlespace, a raw view that is shared with staff, and

subordinate commands that endeavor to improve the quality of the view and a

“production” view that is available for decision makers and commanders. These separate

views are in fact stored in the same location, but are filtered by query. The raw view is

made available via SOA interface to the Zone to Client interface, and the production view

is available via the zone-to-zone interface. The zone-to-zone interface is via a web

service and can be thought of as an Entity Manager of sorts, with the exception that the

content is from a Zone Manager.

The role of these views is ultimately communication: Communication to the user

of the disposition of assets and adversaries, and the users communicating intentions.

Creating or updating the view of the battlespace is not a mechanical endeavor, where data

feeds are pored into a collective map and displayed. Battlespace views or COP are built

over time by expert watchstanders, who tailor the data they receive to fit specific

decision-making priorities. A critical, but often under evaluated aspect of the

development of COP systems is the ability to rapidly communicate on that view. To

communicate effectively on a view, the system must allow seamless interaction between

components, to allow a user to “drag and drop” tracks in a chat room, or mouse-click on

an object to highlight it on multiple users screens. Accomplishing the communications, a

 71

software architect may be tempted to create a monolithic system; however this path is

inconsistent with the SOA design tenant, and can be avoided by utilizing common

standards and interfaces.

In this section we will stand up a fictitious C2 structure utilizing the Zone and

trickle-up pattern established previously. A Navy Carrier Expeditionary strike group is

operating in the South China Sea. Embarked an Aircraft Carrier is the Sea Combat

Commander (SCC). The SCC establishes a zone and populates it with content from the

three tier model. The Zone Manager then establishes its zone-to-client relationship with

its subordinate watchstanders and other platforms that assist the SCC with building the

COP. These zone-to-client relationships are analogous to the host/client relationships in

an Internet chat room, and allow collaboration on the battle-space view provided as a raw

view. Next, the Zone Commander will make its “product view” available to superior or

peer commanders, such as the Air Defense, Group or Strike Commander, for use in their

respective battlespace views. Moving beyond the basic concepts behind the zone and

three tier models, we will now discuss how the nature of COP and traditional systems

differ.

C. CONTRASTING TRADITIONAL C2 STRUCTURES TO DISTRIBUTED
ZONES

A number of technical influences and limitations from both the commercial and

military sector have influenced the development of COP systems. Early successful

client-server systems such as Automated Teller Machines and the Tactical Data Link

system still in use today were guideposts to developers building PC-based C2 Systems.

Section two of this paper provides the reader with background information about these

systems and how they influenced COP systems. In this section, we contrast software

architectures of past COP systems with those of SOA-based systems.

One of the central tenants of earlier COP systems is a “common” view. The

common view is facilitated by synchronizing a series of databases though out the network

to a master view. In Naval C2 systems, the master database is usually located at the

command center. Tracing the path data follows a traditional hub-spoke architecture, in

which subordinate commands report new objects to a central database, which then

 72

merges the objects and sends a common picture back out to the subordinate commands.

This type of architecture is employed by both the Navy Tactical Data Link (TADIL) and

Global Command and Control System Maritime (GCCS-M). In traditional Navy Strike

Group roles, an Aircraft Carrier of other Command platform would host the master

database, and escort ships, submarines and air platforms would report. Presently,

limitations associated with the latest C2 requirement is for a more distributed and

dynamic structure, stretching systems originally designed for static reporting

environments. The most significant difference between older systems described above

and “net-centric” systems is who and how the system is configured. The analogy is

similar to differences between mainframe client-server systems and Internet-enabled

personal computers. In the case of GCCS-M, the master database acts more as

mainframe and the supporting commands play the role of the clients. In reality, the

GCCS-M software allows assignment of any unit as the master although it is the

complexity of configuring the system and the forcing function of its requirement to

establish a command hierarchy that limits its ability to allow more dynamic assignment

of COP responsibility. In a net-centric system, every system can easily shift from a

supporting to a command role and quickly establish the relationships between its data

sources, consumers and clients. The techniques employed to synchronize the data are

similar in both older and newer systems, and hence at many levels, the methods are

identical. It is how the complexity is managed and hidden to the user vice the low-level

methods that differentiate the older and newer methods.

Although both the Parent Child and Zone methods are similar at a macro level in

employment, a discussion of specific implicit requirements derived from facilitating the

ad hoc dynamism discussed above will reveal further differences. As discussed

previously, the state of the art in memory, bandwidth and software complexity restrained

COP system design in a similar manner to any other technology. Those restrictions

manifested themselves in hardware/software solutions tailored specifically for the host

platform (such as an avionics platform or shipboard combat system) or rigid in interface,

making modifications or changes difficult. In addition, the rigidity of interfaces limited

the ability of early COP systems to interface with other systems and provide their data to

 73

other consumers. Without the ability to easily add new types of data objects and sensors,

the system architecture would become unwieldy. Additionally, when forced to interface,

the complexity was high and interfaces were brittle and difficult to manage. Another

manifestation of the technical limitations was an inability to rapidly incorporate and

configure modules to properly correlate, fuse and safeguard data (to include emerging

cross domain data exchange), limiting the ability of the system to respond to emerging

requirements.

Beyond the difficulties of interfacing, the state of the technology also limited the

methods used to store, transport and manage data. Early systems had significant memory

and bandwidth limitations. However these limitations abated over time, but the

underlying software architecture did not alter its design to the emerging reality. Data

distribution remained “dumb pushes” where whole databases where synchronized vice a

system where only the items required (geographically) where moved, wasting bandwidth

and CPU cycles. Additionally data ownership and pedigree was limited, allowing users to

perform delete and modify operations they should not have access to.

The Internet model is the basis of the Trickle-up and Zone patterns and offers

many solutions to the above limitations for future Common Operations Picture

Architectures. These enablers include dividing the architecture into multiple layers and

discrete services vice the API method employed today. The broad layers include a data

source layer, a data management layer and a consumer layer (such as display). Forcing

the architecture to utilize a common messaging and standard data schema such as XML

between these layers starts to develop the Service Oriented Architecture framework

allowing extensible additions of new data sources, consumers and “business to business”

(B2B) applications on the architecture. This will move the system from a “track-centric”

display system to a fully integrated Intelligence Framework with numerous uses and

consumers to leverage and compose the desired data across the enterprise. To function,

SOA’s rely on discovery services, common messaging and smart pushes and pulls based

on user requirements. SOAs return the ability to tailor data to meet specific mission

needs in a just-in-time format in a standards-based, hopefully cost-effective framework.

 74

THIS PAGE INTENTIONALLY LEFT BLANK

 75

VI. MULTI-SOURCE DATA FUSION DISCOVERY SERVICE-
AUTO-FUSION

As discussed in section one, web-services or WS* standards provide a foundation

computing environment to build loosely coupled systems. Utilizing these the research

aims to create an auto-fusion process to execute the following steps to join disparate data

types.

• Service is selected for Auto-Fusion using BPEL

• Attributes are compared by a discovery method for valid services candidates

• Based on criteria, Fusion Engine is selected and data fusion is executed

• New Services are created by BPEL

• User validates if new service should remain

Figure thirty six below diagrams the auto fusion process. On the left side are the SOA

capabilities; discovery, orchestration and services. These capabilities map to the

following web-service standards; UDDI, BPEL and Service respectably.

D
is

co
ve

ry
D

is
co

ve
ry

Se
rv

ic
es

Se
rv

ic
es

O
rc

he
st

ra
tio

n
O

rc
he

st
ra

tio
n

Determine
List of OMS
Candidates

Initiate
AutoFusion

OMS
A

Determine
OMS pair

Fusion
Engine
“DFS”

1

Fusion
Engine
“DFS”

2

Determine
Fusion
Engine

OMS
C

OMS
B

Update
Directory

for new service

Create
New
OMS

Determine
List of DFS
Candidates

Figure 36. Auto Fusion Process

 76

As discussed in section one, the auto-fusion process provides a broad requirement

that drives the data strategy for an entire control and monitoring fusion framework and

the trickle-up and zone patterns provide the foundation technology constructs to enable

auto-fusion. Assuming we have a trickle-up foundation of sensor data and fusion

algorithms, the next issue is how do we rank and match them to support improved

awareness of the environment; the auto-fusion process starts to address those challenges.

Figure 34, shows a process, but the central question is criteria of data source and fusion

logic matching. Section two discusses the joint directors of labs level of fusions and

provides a basic construct for addressing the challenge. The JDL levels of one through

four give a rough framework of the types of fusion, but do not necessarily provide a

ranking, such as level four is better than level one. It does however provide thoughts on

the complexity of the fusion.

From a software engineering perspective the potential cost of a fusion operation is

an interesting metric to examine for evaluating fusion participants. Less qualitative a

metric than “potential improvement in situational awareness,” cost potentially could

provide a method to evaluate fusion participants. Following a cost model, propose an

Auto-fusion figure of merit comprised of three cost related metrics computational

complexity, network cost and a JDL target cost.

The computational cost is an evaluation of how complex the algorithm is, for

example, in the fusion domain an attribute matching algorithm may be less complex than

a position estimation algorithm. For network cost, a view of how many network hops are

required to reach the data source of fusion algorithm. Network cost could also factor in

the existing bandwidth available. JDL target reflects the opportunity cost of a failed

attempt to fuse. The concept is, if we attempt to fuse objects that are unrelated, or

attempt to fuse with an unsuitable algorithm we have lost time. The JDL target reflects

that if we are fusing two reports or two tracks level objects they are more likely to fuse

successfully.

Auto-Fusion FOM = Computational Cost + Network Cost + JDL Target

 77

For the Auto-Fusion FOM to work in a SOA framework where services are paired

with fusion algorithms post run-time, the services must include metadata to tell a

discovery service where it is for network cost, how complex it is for computational cost

and what type of data service it is to influence the JDL target (report, track or entity). The

motivation for using the trickle-up pattern is the ability to place the services in categories

to aid in estimating the JDL target and hence the FOM.

The prototype software developed in this research addressed some early methods

to supporting the auto-fusion process. The prototype system section goes into greater

detail on how a system could approach these challenges and provides reference

architecture for potential implementation.

 78

THIS PAGE INTENTIONALLY LEFT BLANK

 79

VII. MARITIME DOMAIN AWARENESS (MDA) SYSTEM OF
SYSTEM CHALLENGE

The US National Plan to Achieve Maritime Domain Awareness defines MDA as

“the effective understanding of anything associated with the global maritime domain that

could impact the security, safety, economy, or environment of the United States.” MDA

is a Joint DoD, Department of Homeland Defense (DHS), partner nation and intelligence

services effort to use a defense-in-depth strategy to support the following United States

goals for MDA (MDA Strategy, 1).

• Enhance transparency in the maritime domain to detect, deter and defeat threats as

early and distant from U.S. interests as possible

• Enable accurate, dynamic, and confident decisions and responses to the full

spectrum of maritime threats.

• Sustain the full application of the law to ensure freedom of navigation and the

efficient flow of commerce.

US Navy, DHS and US Coast Guard stakeholders have defined MDA into four pillars of

MDA information; vessels, cargo, infrastructure, and people (CONOPS, 2) . For each of

those pillars two broad activities are defined; Global Maritime Intelligence (GMI) and

Global Maritime Situational Awareness (GMSA). In the MDA CONOPS, the following

formula is proposed:

GMI are the intelligence activities in the maritime domain to determine threats, while

GMSA refers to the persistent monitoring of the maritime domain. The CONOPS defines

GMSA as “comprehensive fusion of data from every agency and by every nation with

knowledge of the maritime domain.” For each one of the MDA pillars (vessels, cargo,

people, and infrastructure) the CONOPS proposes an enterprise hub for each that

coordinates the GMI and GMSA activities. Various agencies would lead the enterprise

hubs, with a goal of creating a multi-level security, persistent user defined operational

MDA = GMI + GMSA

 80

picture (UDOP) of the maritime domain. Figure 5 below, from the MDA CONOPS

details the multiple agencies and enterprise hub concept employed by MDA.

Figure 37. MDA Enterprise Hub Architecture (MDA CONOPS)

 A number of technical challenges exist to transform the MDA requirements into a

tangible system. In the next section we will discuss the broad technical approach adopted

by MDA, and how the research in this dissertation can address some of those challenges.

A. MDA TECHNICAL CHALLENGE

A number of technical challenges exist to create the complex system of systems

envisioned by the authors of the MDA CONOPS. A number of them are addresses in the

document itself to include; numerous isolated databases of information, large expanses of

ocean areas are unmonitored, incompatible data exchange methods and extensive policy

and cultural procedures inhibiting information sharing (CONOPS, 4). At a macro-level,

MDA has adopted web-enabled SOA as a means to integrate numerous systems and

address interoperability challenges. These interoperability challenges include efforts to

 81

integrate information from various commercial, multi-national coalition, DoD,

intelligence agency, and non-governmental organizational data of various pedigrees and

legacy infrastructures.

 Although a web-based SOA provides a compelling overall information

architecture technical solution, SOA alone does not provide all the technical tools needed

to address the challenges. To employ SOA, MDA requires a number of supporting

policies such as an overarching data strategy, which includes an extensible data model

and governance structures. A number of efforts are underway across the DoD to provide

the needed processes and systems to develop interoperable systems, to include MDA

related XML schemas and data strategies. One key challenge, discussed specifically in

the CONOPS is central to the dissertation; the significant data management challenge

from MDA. Specifically, the CONOPS cites, “the expected day-to-day MDA operations

will generate incredibly large amounts of data and information.” Additionally the

CONOPS discusses a method to address the large amounts of data expected to result from

MDA operations, the CONOPS directs the development of an “automated fusion

capabilities that integrate into net-centric architecture.” These two concepts are central

to the software patterns, models and methods in this dissertation.

 Creating an auto-fusion architecture envisioned in the CONOPS is not a simple

appendage or requirement on a broader system, but a core influence on the entire

architecture of the solution. Although little detail is provided in the CONOPS, an

automated fusion capability in the maritime domain would take an identified source of

data or single object and attempt to find suitable data source and fusion algorithm to

combine it with. The MDA CONOPS refers to data fusion as “combining of

automatically correlated information with the data that refines the information or presents

it in intuitive format.”(CONOPS, A-8). This definition aligns with the definition provided

by Steinberg and Bowman which states “fusion is a process of dealing with the

association, correlation and combination of data and information from single and multiple

sources to achieve refined position and identity estimates, and complete and timely

assessments of situations and threats, and their significance”(Steinberg, 2-3). The MDA

definition branches out into presentation and seems to view correlation as a

 82

predominantly machine activity, vice a human analysis activity. Although I can find no

specific studies on the ratio of human processing to automatic, limiting the discussion of

fusion to automatically generated content would ignore a range of content that only

informed operators can provide, and is not aligned with the Zone Pattern discussed in the

dissertation. Utilizing the definition provided by MDA and augmenting it with

Stienberg’s we can begin to realize the scope of an auto-fusion framework and address

how this requirement drives the data strategy and architecture for the entire MDA system.

The patterns detailed in this research have direct applicability on the MDA auto-fusion

challenge and are detailed in the proceeding sections.

B. MDA EMPLOYMENT OF THE TRICKLE-UP PATTERN

The Global Maritime Situational Awareness (GMSA) detailed by the MDA

CONOPS requires a varied and significant number of sensors geographically dispersed

throughout the world. The vessel pillar is especially “sensor” driven and is a classic

tracking problem on a global scale. A number of sensors can track the movement of a

vessel trough the water. These include ELINT, SIGINT, acoustic, radar, automated

information system (AIS) and national sensors. Each sensor has its benefits and

drawbacks. ELINT or electrical emissions are normally tracked from target vessels radar

set. ELINT accuracy can be limited, but has long ranges and under certain circumstances

can provide identification attributes. SIGINT usually results from communications gear

aboard a target vessel and has similar limitations and identification attributes as ELINT.

Acoustic sensors have tremendous ranges, but often lack the identification and positional

accuracy needed for a complete understanding of the vessel. Radar is the traditional

sensor for position; however it lacks identification and has limited range. AIS is a system

of shipboard transceivers which the International Maritime Organization’s (IMO)

Maritime Safety Committee directed certain ships over 300 gross tonnage carry. The

system provides information on the identification or Maritime Mobile Service Identities

(MMSI), position, course and speed of vessels and is rapidly becoming a critical part of

the vessel tracking challenge. AIS is an excellent source however it is often in complete

and those engaged in illicit behavior are expected to employ AIS in a deceptive manner,

limiting its effectiveness, Additionally, AIS vessels may unintentionally reduce the

 83

effectiveness with poor antenna placement of improperly configure the device. Lastly,

although national intelligence agency content is a critical component of the MDA

solution, it is beyond the classification of this research, however no apparent reason

exists that the patterns and methods discussed are applicable to that content as well.

Executing the global tracking required of the GMSA, all of the above sensors are

required to build as complete a picture as possible. Installing remote sensors in vicinity

of strategic sea lines of communications will create a global grid of content, which needs

to be organized, maintained and modified to suit the tactical environment. The MDA

framework is an ideal candidate to employ the trickle-up pattern. Specifically, the

trickle-up pattern describes a basic ontology for the remote sensor data as report, track or

entity. Furthermore, the pattern articulates how the fusion and correlation algorithms

operate independently to the data sources until runtime and each data source and fusion

algorithm are unique SOA services. This agility allows the incorporation of new sources

and locations into the data framework as well as allowing different algorithms to operate

on the sources. For the global, geographically dispersed MDA requirement the pattern

provides essential scalability and maintainability. A full description of the trickle-up

pattern is provided in the dissertation, along with a prototype system as reference

architecture for the MDA pilot.

C. MDA EMPLOYMENT OF THE ZONE PATTERN

As discussed previously, the MDA CONOPS envisions a globally netted group of

remote sensors providing situational awareness over the maritime domain. This notion

however negates the significant value human operators can play in evaluating sensor data

and the traditional means of building a common picture of the area. The Zone Pattern

provides a method for operators to manage the three relationships a monitoring system

has; one, the relationship it has with its automated sources of data such as those provided

in the trickle-up pattern, secondly, the relationship a zone has with its subordinates

collaborating on the contents and thirdly the relationship a zone has with the consumer of

its authoritative content. We examine those relationships as they apply to MDA in the

following pages.

 84

A key aspect of the Zone Pattern is the concept of accountability for the quality of

the view of the battlespace. One of the challenges discussed earlier is the view of some

Command and Control system developers that situational awareness is achieved simply

by exposing data sources in a SOA construct, and allowing those sources to be subscribed

by a visualization application. The MDA CONOPS architecture is defined by the user

defined operational picture (UDOP) constructs, which articulates the above view. UDOP

architecture envisions a source to user view that fails to recognize the complexity of

merging sources, methods and fusion systems to build a picture that decision makers can

fight from. The zone to zone relationship captures this concept that sources and

collaborators work on a common view and prepare a finished view for those who

subscribe to the authoritative view. In figure six below a view of the Strait of Malacca

between Singapore and Malaysia is shown. The area is a pivotal sea lane of

communication (SLOC) and a significant portion of world energy and commerce supplies

transit the waterway. Any MDA strategy would target the area as a good choke point to

position numerous sensors to track vessels transiting the waterway. Two nations border

the waterway each with different relationships to the U.S. Following the Zone Pattern a

series of the sensors would feed a Zone which in turn would correlate the various sources

and provide the content to consumers. The U.S. may be one consumer, and the southern

nation may have certain filters set to only provide information stipulated in a data sharing

agreement with the US (perhaps the nation may filter out its own military units, ect). The

northern nation may have different data sharing agreements with the US and the southern

nation and provide different content to each.

 85

Figure 38. MDA Sample Sea Lines of Communications View

The next relationship in the Zone Pattern is the Zone to Client. Here the pattern

articulates a different relationship between what a Zone shares with its consumers and

those who collaborate on it. The Zone to Client construct is a “raw view” as operators

work to collaborate on the objects managed by the view. Perhaps on this view,

uncorrelated ELINT hits and AIS reports with no identification are worked on by

operators to improve situational awareness. The above type of low quality data would

clutter the decision maker view and is usually not actionable enough for decision makers.

In an MDA system a number of participants may participate in a Zone, perhaps by region

or mission. For example, in the Strait of Malacca area discussed the strait may be divided

into sections with a Zone assigned to each. In the Zone perhaps one mid-size vessel, two

shore station operators and a regional headquarters as the “Zone Commander” are joined

in a Zone. Among the participants in this zone, a raw unprocessed view is created and

collaborated on. The Zone leader may sit at the regional headquarters, decide what is

actionable and promotes those objects to the Zone to Zone or “national view.”

The last relationship is the Zone to Data Source. This relationship is between the

Zone and the data sources it subscribes too. Data sources are automatically generated

 86

collect from sensors like AIS, ELINT or RADAR. These sources are part of the trickle-

up pattern and key component of the Zone to Client relationship is the concept that a

Zone could reach into any level of the trickle-up pattern of reports, tracks and entities.

Expanding on the MDA Strait of Malacca example where regions were divided into

Zones. In this example a Zone Commander selects a number of remote data sources to

subscribe too. These may be a radar station, ELINT and AIS device within the area of

responsibility, as well as the AIS receiver on the ship. These sources now populate the

common view of the Zone.

 The MDA challenge is significant in both its scope and geographically dispersed

nature. The Zone Patterns cellular COP strategy provides the robust, scalable pattern to

manage the raw and operator value added content. Enforcing accountability and decision

making at the echelon of command suitable for the data analyzed the pattern departs from

both the TOP-COP model where every node is a mirror of the commanders and the

UDOP model where every source is fed into one general repository where users subscribe

to the desired content, but do not add value. The Zone Pattern reflects a realistic view of

data sources, clients and partnerships where operators “create” a view of the battlespace

from sources and subordinates that is cleaned and analyzed prior to making it available

decision makers. In the next section we will discuss how an Auto-Fusion process can

employ the trickle-up pattern to provide higher value content to the Zone Pattern.

D. MDA EMPLOYMENT OF THE AUTO-FUSION METHOD

The MDA CONOPS recognizes the vast quantities of data an MDA system would

create from not only from installing new sensors on various waterways, but by joining

existing sensors to a broader grid. The MDA information architecture needs to address

those challenges and the trickle-up and Zone patterns provide a foundation to address

them. An additional approach endorsed by the MDA CONOPS is an auto-fusion process

discussed earlier. The auto-fusion process would allow an MDA analyst to dynamically

discover and orchestrate a group of services to search for trends and anomalies. In the

projected MDA information architecture, with dynamic addition of data sources, fusion

engines and participants a dynamic discovery method is essential for analysts to employ

the most current sources and tools. The auto-fusion process provides that high level

 87

requirement, which in turn provides an implicit requirement that drives the entire

information architectures structure and strategy.

For example, in the previously discussed potential MDA subsystem in the Straits

of Malacca, an MDA analyst may be sitting in a regional headquarters. The analyst

participates in one of the regional zones and is charged with maintaining as good as

possible view of vessels transiting through his or her area of operations as possible. The

analyst has a AIS remote feed and decides to use the auto-fusion process to determine if a

better source or fusion algorithm is available to analyze the content. Presently the analyst

has an AIS report, however the unit on the target vessel is malfunctioning or

misconfigured and providing no identity information. Starting with the initial report, the

analyst activates the auto-fusion process which takes the data and meta-data on the

original report and searches for suitable pairs. First the discovery service determines that

a service with similar attribute based information is available in the region of the operator

and determines a geofeasability based fusion engine is the best fit to create the next level

object. The end result of the auto-fusion process is pairing the AIS reports with ELINT

reports just joining the domain since the ELINT LOB reports stem from a transiting

coalition ship. The two are fused using a geofesability fusion engine since the AIS has no

attributes and the ELINT provides some classification (merchant) and a wide ellipse. The

example shows how dynamic the analyst’s environment can be. Although the AIS

transponder may be a constraint in the analyst’s work flow, the ELINT from a passing

ship may not. Additionally, as new fusion and correlation engines become available they

can be added to the environment dynamically at runtime without significant changes to

the existing system. The auto-fusion process has implications on a wide Varity of data

strategy and information architecture issues which are discussed in the next section.

E. MDA DATA STRATEGY

On May 9th, 2003, John P. Stenbit, Chief Information officer for the DoD released

a joint service data strategy to support the defense departments Net-Centric goals. The

strategy states that “the core of the net-centric environment is the data that enables

effective decisions” and “data implies all data assets such as system files, databases,

documents, official electronic records, images, audio files, web sites, and data access

 88

services” (DoD CIO, 3). The data strategy articulated a number of goals and milestones

to support the DoD net-centric vision. These goals stipulate that data should be; visible,

accessible, institutionalized, understandable, trusted, interoperable, and responsive to user

needs. These broad goals also support the DoD’s maritime domain awareness

community of interest as well.

The MDA COI is a large and diverse group and a unifying data strategy is critical

to interoperability. The MDA data strategy should include standard artifacts to include,

service level agreements, data definitions, lexicons, ontology’s and a data schema for

each of the four pillars (vessels, people, infrastructure and cargo). Gaines and Michael’s

define service level agreements (SLA) as “agreements that describe requirements and

incentives for meeting performance thresholds, and specify incentives for meeting

performance and QoS requirements” (Gaines, 289). One of the essential elements of a

data strategy are the data schemas that describe the data objects. A great deal of effort

and research on data schemas and definition are available to MDA developers. If

systems have transitioned to an XML defined object, the present definitions are often

well thought out and ready for adoption and for systems not transitioned to XML, the

legacy data formats are good sources to start and provide insights into how the objects are

employed. Conducting the research for this project, a number of DoD entities are

involved in the development of definitions and schemas. For MDA, a number of entities

are involved in development of data definitions and schemas, providing guidance to

MDA developers and significant standardization has been made by other communities of

interest. For example, for the “people” pillar, the intelligence agencies data definitions

provide a good foundation, for “infrastructure” and “cargo” the commercial shipping

industry has good definitions and for “vessel” the navy and maritime intelligence services

provide a common reference. The key issue is not starting from scratch and learning

from what exists and is adopted. As with any schema or definition, some elements will

remain unique to the MDA COI, however this should be the exception vice the rule. The

focus of this research is associated primarily with the “vessel” pillar and will focus next

on how the two patterns and auto-fusion process can positively influence the MDA data

strategy.

 89

1. MDA Trickle-up Pattern Data Strategy Mapping

 Providing global situational awareness of worldwide maritime vessels traffic is a

significant challenge. A data strategy Developing a data strategy to support the MDA

vessel pillar requires recognition of the dynamic nature of the environment. Sensors of

various pedigrees will join and leave the “grid” at various times at the direction of fluid

coalitions and general equipment availability. Supporting the dynamic quality of the

MDA domain, the trickle-up pattern articulates the relationships and activities of sensors

and services. As discussed previously, each sensor is a unique contributor to the MDA

framework and as each sensor joins the framework it can be dynamically paired with

other data sources and fusion algorithms. The prototype software developed for this

research employed a business process execution language (BPEL) engine to join and

invoke the services. Applying lessons from the prototype and the trickle-up pattern, the

MDA data strategy needs to provide or reference the following artifacts:

• Common XML schema for MDA vessel type (Track in the trickle-up pattern)

• Common XML schema for each sensor type (Reports in the trickle-up pattern)

• Common service level agreements (SLA’s) for each sensor or report type:

⎯ Sensor availability

⎯ Sensor expected performance

⎯ Sensor expected uses and partners

The artifacts provided by the data strategy discussed above provides guidance to

developers on how to build services that reside on the MDA framework and users on

what expect from a sensor. Next we will discuss how the Zone Pattern in the MDA

framework supports the interoperability goals and makes the content available from the

“report, tracks and entities” level to the Command and Control level.

2. MDA Zone Pattern Data Strategy Mapping

The Zone Pattern provides guidance to MDA developers building the applications

that receive the inputs from the sensors feeds and maintain the objects they create to

visualize, collaborate and manage the view of the target maritime environment. Similar

to the trickle-up pattern influences on the MDA data strategy, the Zone Pattern guides the

 90

interactions between sources, operators and consumers, and provides input to service

level agreements between providers and consumers as well as input to the definitions of a

vessel object. As discussed previously, the zone pattern articulates the relationship

between an instance of MDA authority and the data sources, participants who assist in the

development of the view and those that consume the “finished” view. Specific inputs to

the MDA data strategy include:

• Service Level Agreements between data provider and application

• Service Level Agreements between “approved view” and consumer

• Data definition and schemas related to vessel objects

For example, in an MDA system, a report level sensor such as an AIS receiver would

feed a report manager in the trickle-up framework. The report would be fused with

reports from an ELINT source and promoted to a track level object. This track level

object would then be subscribed to by a zone. These zone participants would work to

resolve ambiguities and create an authorized view of the defined region or mission space.

The data strategy would provide guidance to developers of the AIS report manager to

what schema and data definitions to build to as well as how to interact with the fusion

engine logic existing in the framework. Additionally, the data strategy would provide

artifacts describing how the track level managers would interface with the Zone

applications and provide minimum pedigree standards for the data such as how often the

objects are updated and how long of a history the data store maintains. Referring back to

our example a statement such as; “to participate in the MDA framework an AIS report

manager shall maintain a report history of twelve months, with an update rate of 5

minuets, have a general availability of 95 percent and have demonstrated interoperability

with MDA fusion engines” A similar statement could apply to track or entity level

objects, with defined transforms between the trickle-up and zone managers. The Zone

may have a data strategy statement like “MDA Zones limit high interest objects to 10%

of expected daily track load to avoid congestion.” We will close the discussion of with a

discussion of how the auto-fusion process should influence the MDA data strategy

 91

3. MDA Auto-fusion Process to Data Strategy Mapping

In Robert Persig’s book Lila, he divides the vague world of “quality” into two

broad categories of static and dynamic quality (Persig, 172). An interesting parallel

exists between Persig’s view of patterns and the relationship the auto-fusion process has

with the trickle-up and zone patterns. The trickle-up pattern is intended to represent a

more static pattern (although relatively agile when compared to traditional software);

while the zone is a much more dynamic pattern representing the minute by minute

changes and value added activities. The auto-fusion process provides a unifying

intellectual framework to unite the two patterns in a real world example and provides the

mechanism to translate the dynamic changes in the environment to solid static patterns

that a system can employ.

Translating the concepts above to the MDA paradigm, the Auto-Fusion process

provides the MDA data strategy with a unifying goal and an implicit requirement that

enforces interoperability. Where the zone and trickle-up patterns divide the MDA vessel

pillars into data sources (e.g. static) and consumers (e.g. dynamic), the auto-fusion

process allows the architecture to renew itself as participants grow and chance. For

example, referencing back to the AIS report example cited above, we enable the auto-

fusion process to look through its listing of other data sources and fusion engines to join

with. To facilitate a framework that accomplishes those goals the data strategy must

detail and enforce a number of guidance measures. Specific guidance statements include;

• How data sources and fusion engines described in the discovery service.

• How fusion engines are ranked against each other based on applicability

towards existing and projected fusion pairs.

Mapping the requirements of an auto-fusion construct to the Maritime Domain

Awareness system is a high order requirement that drives a number of lower level

requirements driving interoperability between a number of sources and systems. The

MDA data strategy is the vehicle to inform developers of the nature of the framework and

influence the architecture to support the desired interoperability and functionality.

 92

THIS PAGE INTENTIONALLY LEFT BLANK

 93

VIII. PROTOTYPE SOFTWARE SYSTEM

A. INTRODUCTION

The purpose of the prototype software system is to demonstrate the technical

feasibility of a SOA web service implemented three tier data model to the Intelligence,

Surveillance and Reconnaissance military community and validate the potential

knowledge management benefits associated with its adoption. The prototype software

development occurred in two phases. Initially the prototype was a traditional application

explained later in this chapter. The traditional application was developed by the author to

provide a geospatial representation of attack and reconstruction data in support of

coalition objectives during Operation Iraq Freedom (OIF).

In support of this dissertation research, the application was adopted to a SOA

based collection of web-services. The programming logic of the traditional application

was segmented into a number of web-service components and chained using a web based

orchestration module. This chapter will provide detailed design description and

requirements starting first with the legacy application, followed by the SOA web-service

version. The chapter concludes with a discussion of how the SOA based version

validates the three tier data model and how covers some of the technical challenges

associated with developing and implementing the prototype to include recommendations

on changes to some web-standards.

B. LEGACY SYSTEM DESIGN

The legacy system was named Reconstruction Analyst Toolset/Common

Operations Picture was a rapid development project chartered by the Security Plans and

Operations directorate of the Iraq Gulf Region Division to facilitate analysis of Iraq

reconstruction and attack data in a Geo-spatial format. The software takes two

independent sources of data and conducts a simple geo-feasibility test similar to the some

computations required in basic positional data fusion. Although the requirement at

design did not drive a web-service solution, transition of the legacy system to a web-

service provides insight into how the three tier data model could be architect using web-

 94

service technology. RATCOP was originally developed by the author in April 2006 due

to limited commercial software to analyze reconstruction data, and display it on mapping

software in Iraq. Figure 4 below is a screen capture of the graphical user interface for

the Reconstruction Analyst Toolset. The system allows the user to select search criteria

on the GUI to search a database of insurgent attacks and reconstruction projects. The

results of the search are written to a Keyhole Markup Language file which Google Earth

can read to plot on its interactive map or a Comma Separated Value (.CVS) file that the

falcon view map can read and display.

Figure 39. Reconstruction Analyst Toolset GUI

An example of the object output is shown below in Figure 5. The icon on each geo-

spatial product has embedded meta-data.

 95

Figure 40. Google Earth and Falcon View display

Reconstruction Analyst Toolset Objectives

• Rapidly display in a geo-spatial format the accurate position of Iraq

Reconstruction related significant security events (SIGACTS), which impact

reconstruction, and the location of projects.

• Allow the user to sort on various criteria to isolate specific types, geographic

region and create a geo bounded box around a region to select objects inside.

• Allow user to select a project, which creates an overlay of only those

significant attack (SIGACT’s) within a user specified distance from the

project.

• Allow users to display the data on various digital mapping products

• Operate on existing hardware and software operating systems

• Develop overlay capability to allow transfer of data to appropriate secure

environment for expanded analysis of data at a higher classification level.

• Overlay Project data, SIGACTS and Reconstruction Team open source data to

Analyze Security Impacts in an unclassified domain.

• Leverage existing capabilities and resources to automate data retrieval and

presentation.

 96

• Provides ability to compose view of disparate date sources on a common geo-

spatial client, with ability to share analysis products with commercial partners

RAT is a Java Application developed in the J-Builder Integrated Development

Environment. It interfaces a Microsoft Access Database via the JDBC-ODBC Bridge.

The data resides on two tables labeled SIGACT and RMS. The SIGACT data originally

is gathered from classified sources such as FUSION net, has certain data fields removed

and is downgraded and placed on an Excel spreadsheet. The project data can be gathered

from multiple sources to include the Army Corps of Engineers Reconstruction

Management System, MAXIMO, or Iraq Reconstruction Management System. That

spreadsheet can then be uploaded to the database and made available via the RAT. The

System architecture diagram is in Figure 41, below:

Figure 41. RAT System Overview

FALCON VIEW Google Earth

RAT
Application MDB

 97

C. SOA PROTOTYPE SYSTEM

1. Overall Architecture

The web-service prototype employs SOA based technologies to implement a

reference three tier data model. All services are developed in the Java programming

language and use either the Enterprise Java Bean or Servlet construct. Two services

reside in the Report Tier whose content is combined by a fusion service which then

populates the results in the Track Tier. One report service provides content from a

sample data set of Iraq reconstruction project data via an EJB to provide content for

Simple Object Access Protocol (SOAP) transport and another via SERVLET to provide

content via a Keyhole Markup Language (KML) for dynamic consumption by Google

Earth. The second report level service provides content from a declassified sample

representation of Iraq significant attack (SIGACT) database via an EJB to provide

content for SOAP transport and another via SERVLET to provide content via a Keyhole

Markup Language (KML) for dynamic consumption by Google Earth. Employing a

BPEL service, the EJB report tier services are connected to a Fusion Service which

conducts a simple calculation to determine how far each SIGACT is from a

Reconstruction Project and takes the fused product of the two services and provides them

to the new track tier service EJB. Note that both tiers are available for viewing and the

services can be employed for use other than the BPEL orchestration. Figure 7 below

shows the system architecture of the prototype.

 98

Report Tier

Fusion Tier

Track Tier

Computer B – J2EE
Iraq Attack

EJB - Process

Iraq Attack
Servlet - KML

http://162.2.1.2:8080

Computer B – J2EE
Iraq Attack

EJB - Process

Iraq Attack
Servlet - KML

http://162.2.1.2:8080

Computer D– J2EE
Iraq Attack

EJB - Process

Iraq Attack
Servlet - KML

http://162.2.1.4:8080

Computer D– J2EE
Iraq Attack

EJB - Process

Iraq Attack
Servlet - KML

http://162.2.1.4:8080

Computer C – J2EE
Fusion Engine
EJB - Process

http://162.2.1.3:8080

Computer C – J2EE
Fusion Engine
EJB - Process

http://162.2.1.3:8080

Computer A – J2EE
Iraq Reconstruction

EJB - Process

Iraq Reconstruction
Servlet - KML

http://162.2.1.1:8080

Computer A – J2EE
Iraq Reconstruction

EJB - Process

Iraq Reconstruction
Servlet - KML

http://162.2.1.1:8080

Google Earth
<KML Format>

<SOAP>

<SOAP>

Computer E – J2EE
Auto Fusion Mngr

EJB - Process

BPEL ENGINE

http://162.2.1.5:8080

Figure 42. Web Service Prototype Architecture

Additionally, Figure 8 below shows the logic flow of the orchestration or BPEL data.

The diagram is a product of Sun Microsystems NetBeans 5.5 developer software system.

The bpel graphical designer shows the start of the process, the invocation of the first two

or report level services, and the fusion engine consuming the data. Following the fusion

engine processing, the BPEL service then takes the output and provides the content to the

Track Level service to store. The BPEL process then reports completion and ends.

 99

Figure 43. BPEL Process from NetBeans 5.5 GUI

 100

2. System Environment and Foundation Commercial Products

The prototype system runs on Sun Application Server 9.0. The application server

provides the foundation service hosting, orchestrations via the Business Process

Application Language Engine (BPEL). The Google Earth servlet was developed in Java

using the Boreland Java Development suite while the Enterprise Java Beans were

developed using Sun’s Netbeans 5.5 Integrated Development Environment. The code

and services were developed as a demonstration prototype and lack appropriate error

handling and testing associated with production systems. Although Sun Application

Server was employed in development, the servlet’s operated on BEA Weblogic Server

8.0 and Apache Web Server. The BPEL functionality was not employed on any other

server than Sun Application 9.0. The persistence for the various services is provided by a

Microsoft Access Database via the Object Database Connection (ODBC) to Java

Database Connection (JDBC) Bridge.

3. Enterprise Java Bean (EJB) Modules

The prototype EJB services are simple web-enabled data modules that employ a

Java Data Base Connection (JDBC) to retrieve and write data to a Microsoft Access

Database. In this section we will discuss the web-service description language (WSDL)

for each EJB, highlight the XML schema and detail critical processing logic. Actual

prototype source code snippets will be shown in gray. Complete source code is provided

in appendix A. Binary files can be obtained from the Naval Postgraduate School. A total

of four Enterprise Java Beans are in the prototype; (1) SIGACT Processor, (2)

Reconstruction Project Processor, (3) Fusion Engine Processor and (4) New Track

Processor.

a. Significant Attack (SIGACT) Enterprise Java Bean (EJB)
Module

Below is various components source code. First we will look at the XSD,

then the WSDL and finally the EJB source code from the Sigact EJB. This servlet takes

in two values named SIGACTStart and SIGACTFinish. These strings are date values

which bound an SQL query into the data base. For example if a “7/15/06” start and

 101

“8/15/06” date is entered then all the significant attacks in that month are returned. The

XML schema (XSD) below has a red box which highlights two sections of the XSD.

First are the two entering values discussed above with the two dates, the second are the

output values named SIGACT which contain an attack location with a value for latitude

(double) and longitude (double). Although not critical for the discussion of webservices

at this point, developers might note that the database for sigacts contains objects with

Military Grid Reference System (MGRS) vice Latitude and Longitude (LL) in

degrees.seconds format required by many mapping systems. The conversion from

MGRS to LL is part of the EJB java source code running on the server. If minimizing

server load was a concern in a production system, batch conversion from MGRS to LL

should be considered in a production system. The processSIGACT.xsd file is below.

 102

The next section of the EJB we will discuss is the Web-service

Description Language (WSDL). Similar to the XSD file this is a formatted XML file as

shown below to provide metadata to developers on how to employ the service. Three

sections of processSIGACT.wsdl are highlighted and are discussed below.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema version="1.0" targetNamespace="http://BaseSigactEJB.sun.com/"
xmlns:tns="http://BaseSigactEJB.sun.com/"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="processBaseSIGACTEJB"
type="tns:processBaseSIGACTEJB"/>
 <xs:element name="processBaseSIGACTEJBResponse"
type="tns:processBaseSIGACTEJBResponse"/>
<xs:complexType name="processBaseSIGACTEJB">
<xs:sequence>
<xs:element name="arg0" type="xs:string" minOccurs="0"/>
 <xs:element name="arg1" type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="processBaseSIGACTEJBResponse">
<xs:sequence>
<xs:element name="return" type="tns:sigact" maxOccurs="unbounded"
minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="sigact">
 <xs:sequence>
 <xs:element name="attackTarget" type="xs:string" minOccurs="0"/>
 <xs:element name="sigLat" type="xs:double"/>
 <xs:element name="sigLon" type="xs:double"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

 103

First is the input and output messages derived from the schema file,

second is the type of message. Document literal is employed in the above prototype

software to maintain visibility of the data content and align the software as close to the

open standards as possible. The third highlighted section contains the location of the

service. Note the “localhost” location. The prototype can run on a number of locations as

<?xml version="1.0" encoding="UTF-8"?><definitions <message
name="processBaseSIGACTEJB">
 <part name="parameters" element="tns:processBaseSIGACTEJB"/>
 </message>
 <message name="processBaseSIGACTEJBResponse">
 <part name="parameters" element="tns:processBaseSIGACTEJBResponse"/>
 </message>
 <portType name="BaseSigactEJB">
 <operation name="processBaseSIGACTEJB">
 <input message="tns:processBaseSIGACTEJB"/>
 <output message="tns:processBaseSIGACTEJBResponse"/>
 </operation>
 </portType>
 <binding name="BaseSigactEJBPortBinding" type="tns:BaseSigactEJB">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>
 <operation name="processBaseSIGACTEJB">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="BaseSigactEJBService">
 <port name="BaseSigactEJBPort" binding="tns:BaseSigactEJBPortBinding">
 <soap:address location="http://localhost:8080/BaseSigactEJBService/BaseSigactEJB"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"/>
 </port>
 </service>
 <plnk:partnerLinkType name="BaseSigactEJBLinkType">
 <plnk:role name="BaseSigactEJBRole" portType="tns:BaseSigactEJB"/>
 </plnk:partnerLinkType>
</definitions>

 104

long as the IP address and port is provided. To help an individual repeating the software

“localhost” is employed to ease set up.

The final component of the Sigact EJB to discuss is the java source code.

A number of functions are executed by the EJB however the critical ones include:

• Communicating with the SOAP messages

• Querying the database with the input values and obtaining the results of the

query

• Converting the MGRS position data to a degrees and seconds Latitude and

Longitude double format

• Returning the list of sigacts in a java array format to support a variable sized

SOAP message to support return messages of variable sizes.

The first section highlighted employs the java @WebMethod class which processing the

incoming SOAP message with the start and stop dates and returns the SOAP body with

the SIGACT objects.

 The next section of code queries the Microsoft access database and packages the results

in an array format. In order to make the source readable some of the code is deleted. The

complete source code is available in appendix A. The database query employs

@Stateless()
@WebService()
public class BaseSigactEJB {

 Database database1 = new Database();
 QueryDataSet queryDataSet1 = new QueryDataSet();

 boolean stat = false;

 @WebMethod
 public List<sigact> processBaseSIGACTEJB(String sigactStart, String
sigactFinish) {

 return getSigBatch(sigactStart,sigactFinish);
 }

 105

Boreland© database query classes. Note the embedding of the start and finish strings

into an SQL statement handled by the database query method and the invocation of the

driver type.

The next section of code creates the list object to return to the @webmethod class. Note

the sections that create the array object, add the object to the list object and call the

Position method which converts the MGRS data to Latitude and Longitude. As above,

portions of the source are deleted to make the code readable and complete source code is

available in Appendix A.

public List<sigact> getSigBatch(String sigactStart, String sigactFinish){
 …
ueryDataSet1.setQuery(new
com.borland.dx.sql.dataset.QueryDescriptor(database1, "SELECT
SIGACT.EventType,SIGACT.EventCategory,SIGACT.OccuredWhen,SIGACT.Po
stedWhen,SIGACT.region,SIGAC.MGRS,SIGACT.PrimaryTarget,SIGACT.Targe
tCategory,SIGACT.City,
SIGACT.Province FROM
C:\\Documents and Settings\\kjrothen\\MyDocuments\\SIGACT\".SIGACT"
WHERE OccuredWhen BETWEEN #" + start + "# AND #" + finish + "# ", null,
true, Load.ALL));
database1.setConnection(new
com.borland.dx.sql.dataset.ConnectionDescriptor("jdbc:odbc:SIGACT", "", "",
false, "sun.jdbc.odbc.JdbcOdbcDriver"));

 106

The above code represents the sigact functionality of the prototype software. We will

now examine the two other Enterprise Java Beans in the system; Reconstruction Project

EJB and new track EJB.

b. Iraq Reconstruction Project Enterprise Java Bean (EJB) Module

Following the same format as the SIGACT EJB we will now examine the

Reconstruction Project module source code and highlight critical processing logic. First

we will look at the XSD, then the WSDL and finally the EJB source code from the

ReconProject EJB. The reconstruction project takes in a single value named Sector,

which maps to an investment sector as defined by the United States Army Corps of

Engineers (USACE) leading the U.S. portion on the Iraq critical infrastructure

reconstruction activities. The string object has values such as ELE to include Electricity,

or H2O for water projects. The author has been unable to obtain a complete listing or data

model for the values from USACE, however the sample data set contains only ELE,

H2O, JUST, and SEC values. The sector value is used to conduct an SQL query, which

returns all projects with that sector value.

The XML schema (XSD) below has a red box which highlights two

critical sections of the XSD. First are the sector values which is a search field as

List<sigact> sigie = new ArrayList<sigact>();
 while (queryDataSet1.inBounds()) {…
 EventType = queryDataSet1.getString("EventType");
 MGRS = queryDataSet1.getString("MGRS");…
 Position R = MGRStoLat(MGR);
 userlat = R.getLat();
 userlon = R.getLng(); …
…
 sigact sig = new sigact();
 sig.setAttackTarget(PrimaryTarget);
 sig.setSigLat(userlat);
 sig.setSigLon(userlon);
 sigie.add(sig);
 queryDataSet1.next();
 }

 107

discussed above and the second are the output values named project which contain a

projects name and location with a value for latitude (double) and longitude (double).

Similar to SIGACT’s the database for projects is also in Military Grid Reference System

(MGRS) vice Latitude and Longitude (LL) in degrees.seconds format required by many

mapping systems. The conversion from MGRS to LL is part of the EJB java source code

running on the server. If minimizing server load was a concern in a production system,

batch conversion from MGRS to LL should be considered in a production system. The

ReconProjectEJBService_schema1 file is below.

The next section of the EJB we will discuss is the Web-service

Description Language (WSDL). Similar to the XSD file this is a formatted XML file as

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema version="1.0" targetNamespace="http://ReconProjEJB.sun.com/"
xmlns:tns="http://ReconProjEJB.sun.com/"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="getReconProject" type="tns:getReconProject"/>
 <xs:element name="getReconProjectResponse"
type="tns:getReconProjectResponse"/>
 <xs:complexType name="getReconProject">
 <xs:sequence>
 <xs:element name="Sector" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="getReconProjectResponse">
 <xs:sequence>
 <xs:element name="return" type="tns:retVal" maxOccurs="unbounded"
minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="retVal">
 <xs:sequence>
 <xs:element name="HVULat" type="xs:double"/>
 <xs:element name="HVULong" type="xs:double"/>
 <xs:element name="URI" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

 108

shown below to provide metadata to developers on how to employ the service. Three

sections of ReconProjectEJB.wsdl are highlighted and are discussed below.

 109

<?xml version="1.0" encoding="UTF-8"?><definitions
xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:tns="http://ReconProjEJB.sun.com/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
targetNamespace="http://ReconProjEJB.sun.com/" name="ReconProjectEJBService"
xmlns:plnk="http://schemas.xmlsoap.org/ws/2004/03/partner-link/">
 <types>
 <xsd:schema>
 <xsd:import namespace="http://ReconProjEJB.sun.com/"
schemaLocation="ReconProjectEJBService_schema1.xsd"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"/>
 </xsd:schema>
 </types>
 <message name="getReconProject">
 <part name="parameters" element="tns:getReconProject"/>
 </message>
 <message name="getReconProjectResponse">
 <part name="parameters" element="tns:getReconProjectResponse"/>
 </message>
 <portType name="ReconProjectEJB">
 <operation name="getReconProject">
 <input message="tns:getReconProject"/>
 <output message="tns:getReconProjectResponse"/>
 </operation>
 </portType>
 <binding name="ReconProjectEJBPortBinding" type="tns:ReconProjectEJB">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>
 <operation name="getReconProject">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="ReconProjectEJBService">
 <port name="ReconProjectEJBPort" binding="tns:ReconProjectEJBPortBinding">
 <soap:address
location="http://localhost:8080/ReconProjectEJBService/ReconProjectEJB"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"/>
 </port>
 </service>
 <plnk:partnerLinkType name="ReconProjectEJBLinkType">
 <plnk:role name="ReconProjectEJBRole" portType="tns:ReconProjectEJB"/>
 </plnk:partnerLinkType>
</definitions>

 110

First is the input and output messages derived from the schema file, second is the

type of message. Document literal is employed in the above prototype software to

maintain visibility of the data content and align the software as close to the open

standards as possible. The third highlighted section contains the location of the service.

Note the “localhost” location. The prototype can run on a number of locations as long as

the IP address and port is provided. To help an individual repeating the software

“localhost” is employed to ease set up.

The final component of the Reconstruction EJB to discuss is the java source code.

A number of functions are executed by the EJB however the critical ones include:

• Communicating with the SOAP messages

• Querying the database with the input values and obtaining the results of the

query

• Converting the MGRS position data to a degrees and seconds Latitude and

Longitude double format

• Returning the list of reconstruction projects in a java array format to support a

variable sized SOAP message to support return messages of variable sizes.

The first section highlighted employs the java @WebMethod class which processing the

incoming SOAP message with the desired sector and returns the SOAP body with the

Reconstruction Project objects.

 111

The next section of code queries the Microsoft access database and packages the results

in an array format. In order to make the source readable some of the code is deleted. The

complete source code is available in appendix A. The database query employs

Boreland© database query classes. Note the embedding of the sector string into an SQL

statement handled by the database query method and the invocation of the driver type.

The next section of code creates the list object to return to the @webmethod class. Note

the sections that create the array object, add the object to the list object and call the

Position method which converts the MGRS data to Latitude and Longitude. As above,

@WebService
@Stateless
public class ReconProjectEJB{

 Database database1 = new Database();
 QueryDataSet queryDataSet1 = new QueryDataSet();
 DBDisposeMonitor dBDisposeMonitor1 = new DBDisposeMonitor();

@WebMethod
public List<RetVal> getReconProject(@WebParam(name="Sector") String
SECTOR){

 List<RetVal> projbatch = new ArrayList();
 return projbatch = getProjBatch(SECTOR);
 }

public List<RetVal> getProjBatch(String SECTOR){
…
queryDataSet1.setQuery(new
com.borland.dx.sql.dataset.QueryDescriptor(database1, "SELECT
RMS_ALL.SHORT_NAME,RMS_ALL.URI,RMS_ALL.GRID_LOCATION" +
" FROM \"C:\\Documents and Settings\\kjrothen\\My
Documents\\RMS_ALL\".RMS_ALL"
 + " WHERE SECTOR = '"+SECTOR+ "' ", null, true, Load.ALL));
…
database1.setConnection(new
com.borland.dx.sql.dataset.ConnectionDescriptor("jdbc:odbc:RMS_ALL", "", "",
false, "sun.jdbc.odbc.JdbcOdbcDriver"));

 112

portions of the source are deleted to make the code readable and complete source code is

available in appendix A.

The above code represents the Reconstruction Project functionality of the prototype

software. We will now examine the forth Enterprise Java Beans in the system; the track

fusion EJB.

c. Fusion Engine Enterprise Java Bean (EJB) Module

We will now examine the Fusion Engine EJB in the prototype which takes

the inputs from the SIGACT and Reconstruction Project EJB’s and conducts a simple

fusion algorithm. Both the inputs and output are provided via SOAP messages in

document literal format. In the following section, the Fusion Enginer EJB source code

and critical processing logic is reviewed. First we will look at the XSD, then the WSDL

and finally the EJB source code from the GeoTrackFusionEJB. Change it to 4th order

paragraph – check all the way through

The XML schema (XSD) below has a red box which highlights two

critical sections of the XSD. The first box highlights the input messages; one for the

SIGACTs which includes the latitude, longitude and attack type and another message for

reconstruction projects which include latitude, longitude and project name for each

PROJECT object. The second box highlights the output message which has the

List<RetVal> progie = new ArrayList<RetVal>();

 while (queryDataSet1.inBounds()) {

 MGRS = queryDataSet1.getString("GRID_LOCATION");
 String projectName = queryDataSet1.getString("URI");
 Position R = MGRStoLat(MGRS);
 double userlat = R.getLat();
 double userlon = R.getLng();
RetVal project = new RetVal();
 project.setURI(projectName);
 project.setHVULat(userlat);
 project.setHVULong(userlon);
 progie.add(project);
 queryDataSet1.next();

 113

combined or “fused” object to include the latitude, longitude and combined name (in the

case of the prototype the combined name is a string concatenation of the attack type and

the project name). The GeoTrackFusionService_schema1 file is below.

 114

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema version="1.0"
targetNamespace="http://GeoTrackFusion.sun.com/"
xmlns:tns="http://GeoTrackFusion.sun.com/"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="isGeoTrackFusion" type="tns:isGeoTrackFusion"/>
<xs:element name="isGeoTrackFusionResponse"
type="tns:isGeoTrackFusionResponse"/>
<xs:complexType name="isGeoTrackFusion">
<xs:sequence>
<xs:element name="arg0" type="tns:sigact" maxOccurs="unbounded"
minOccurs="0"/>
<xs:element name="arg1" type="tns:project" maxOccurs="unbounded"
minOccurs="0"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="sigact">
<xs:sequence>
<xs:element name="attackTarget" type="xs:string" minOccurs="0"/>
<xs:element name="sigLat" type="xs:double"/>
<xs:element name="sigLon" type="xs:double"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="project">
<xs:sequence>
<xs:element name="projLat" type="xs:double"/>
 <xs:element name="projLon" type="xs:double"/>
 <xs:element name="projectName" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="isGeoTrackFusionResponse">
 <xs:sequence>
 <xs:element name="return" type="tns:combined"
maxOccurs="unbounded" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="combined">
 <xs:sequence>
 <xs:element name="combLat" type="xs:double"/>
 <xs:element name="combLon" type="xs:double"/>
 <xs:element name="combName" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

 115

The next section of the EJB we will discuss is the Web-service

Description Language (WSDL). Similar to the XSD file this is a formatted XML file as

shown below to provide metadata to developers on how to employ the service. Three

sections of ReconProjectEJB.wsdl are highlighted. First is the input and output messages

derived from the schema file. The second box highlights the type of message, in this case

Document literal is employed in the above prototype software to maintain visibility of the

data content and align the software as close to the open standards as possible. The third

highlighted section contains the location of the service. Note the “localhost” location.

The prototype can run on a number of locations as long as the IP address and port is

provided. To help an individual repeating the software “localhost” is employed to ease

set up.

 116

<?xml version="1.0" encoding="UTF-8"?><definitions
xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:tns="http://GeoTrackFusion.sun.com/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
targetNamespace="http://GeoTrackFusion.sun.com/" name="GeoTrackFusionService"
xmlns:plnk="http://schemas.xmlsoap.org/ws/2004/03/partner-link/">
 <types>
 <xsd:schema>
 <xsd:import namespace="http://GeoTrackFusion.sun.com/"
schemaLocation="GeoTrackFusionService_schema1.xsd"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"/>
 </xsd:schema>
 </types>
 <message name="isGeoTrackFusion">
 <part name="parameters" element="tns:isGeoTrackFusion"/>
 </message>
 <message name="isGeoTrackFusionResponse">
 <part name="parameters" element="tns:isGeoTrackFusionResponse"/>
 </message>
 <portType name="GeoTrackFusion">
 <operation name="isGeoTrackFusion">
 <input message="tns:isGeoTrackFusion"/>
 <output message="tns:isGeoTrackFusionResponse"/>
 </operation>
 </portType>
 <binding name="GeoTrackFusionPortBinding" type="tns:GeoTrackFusion">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>
 <operation name="isGeoTrackFusion">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="GeoTrackFusionService">
 <port name="GeoTrackFusionPort" binding="tns:GeoTrackFusionPortBinding">
 <soap:address
location="http://localhost:8080/GeoTrackFusionService/GeoTrackFusion"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"/>
 </port>
 </service>
 <plnk:partnerLinkType name="GeoTrackFusionLinkType">
 <plnk:role name="GeoTrackFusionRole" portType="tns:GeoTrackFusion"/>

 117

The final component of the Fusion Engine EJB to discuss is the java

source code. A number of functions are executed by the EJB however the critical ones

include:

• Communicating with the SOAP messages

• Executing the fusion engine algorithm

• Returning the list of new combined objects in a java array format to support a

variable sized SOAP message to support return messages of variable sizes.

The first section highlighted employs the java @WebMethod class which processing the

incoming SOAP messages from the SIGACT and Reconstruction Project EJB’s.

The next section of code executes the fusion algorithm and packages the results in an

array format. In order to make the source readable some of the code is deleted. The

complete source code is available in appendix A. The first highlighted box shows the

call to the next method which evaluates if the SIGACT and Reconstruction Project

objects are next to each other. If the object returns a true value an average of the two

objects is created to approximate the position of the new or “combined” object as shown

in the second highlighted box.

@Stateless()
@WebService()
public class GeoTrackFusion {

@WebMethod
public List<combined> isGeoTrackFusion(List<sigact> sigbatch, List<project>
projbatch){

 List<combined> fusebatch = new ArrayList();
 fusebatch = getfusedBatch(sigbatch,projbatch);
return fusebatch;

}

 118

The above code represents the Fusion Engine functionality of the prototype software. We

will now examine the last Enterprise Java Beans in the system; the new track EJB.

d. New Track Enterprise Java Bean (EJB) Module

The last EJB in the prototype writes the fused objects from the fusion

engine EJB into a database. We will examine the New Track module source code and

highlight critical processing logic. First we will look at the XSD, then the WSDL and

finally the EJB source code from the NewTrackService EJB. The New Track Service

takes in the SOAP message with a series of objects with a name, latitude and longitude.

public List<combined> getfusedBatch(List<sigact> sigbatch, List<project>
projbatch) {

 List<combined> comie = new ArrayList<combined>();
 …
 Iterator<sigact> sigIter = sigbatch.iterator();
 while(sigIter.hasNext()) {
 sigact s = sigIter.next();
 siglat = s.getSigLat();
 siglon = s.getSigLon();
 Iterator<project> projIter = projbatch.iterator();
 while(projIter.hasNext()) {
 project p = projIter.next();
 projlat = p.getProjLat();
 projlon = p.getProjLon();
 // maketrack fourth varialble is a distance setting in Miles.
 maketrack = isnextTo(projlat,projlon,siglat,siglon,5);
 if (maketrack){
 newname = p.getProjectName() + s.getAttackTarget();

 double newlat = (projlat + siglat)/2;
 double newlon = (projlon + siglon)/2;

 combined com = new combined();
 com.setcombName(newname);
 com.setcombLat(newlat);
 com.setcombLon(newlon);
 comie.add(com);
 }
 return comie;

 119

The service then returns a string reporting it completed writing the objects to its database.

The XML schema (XSD) below has a red box which highlights two critical sections of

the XSD. First is the input message with the combined objects. The second is the return

object which is a simple string reporting completion of the database write. The

NewTrackServiceService_schema1 file is below.

The next section of the EJB we will discuss is the Web-service Discription

Language (WSDL). Similar to the XSD file this is a formatted XML file as shown below

to provide metadata to developers on how to employ the service. Three sections of

NewTrackService.wsdl are highlighted and are discussed below.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema version="1.0"
targetNamespace="http://NewTrackService.sun.com/"
xmlns:tns="http://NewTrackService.sun.com/"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="newTrackdb" type="tns:newTrackdb"/>
 <xs:element name="newTrackdbResponse"
type="tns:newTrackdbResponse"/>
 <xs:complexType name="newTrackdb">
 <xs:sequence>
 <xs:element name="arg0" type="tns:combined" maxOccurs="unbounded"
minOccurs="0"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="combined">
<xs:sequence>
 <xs:element name="combLat" type="xs:double"/>
 <xs:element name="combLon" type="xs:double"/>
 <xs:element name="combName" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="newTrackdbResponse">
 <xs:sequence>
 <xs:element name="return" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

 120

<?xml version="1.0" encoding="UTF-8"?><definitions
xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:tns="http://NewTrackService.sun.com/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
targetNamespace="http://NewTrackService.sun.com/" name="NewTrackServiceService"
xmlns:plnk="http://schemas.xmlsoap.org/ws/2004/03/partner-link/">
 <types>
 <xsd:schema>
 <xsd:import namespace="http://NewTrackService.sun.com/"
schemaLocation="NewTrackServiceService_schema1.xsd"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"/>
 </xsd:schema>
 </types>
 <message name="newTrackdb">
 <part name="parameters" element="tns:newTrackdb"/>
 </message>
 <message name="newTrackdbResponse">
 <part name="parameters" element="tns:newTrackdbResponse"/>
 </message>
 <portType name="NewTrackService">
 <operation name="newTrackdb">
 <input message="tns:newTrackdb"/>
 <output message="tns:newTrackdbResponse"/>
 </operation>
 </portType>
 <binding name="NewTrackServicePortBinding" type="tns:NewTrackService">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="document"/>
 <operation name="newTrackdb">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="NewTrackServiceService">
 <port name="NewTrackServicePort" binding="tns:NewTrackServicePortBinding">
 <soap:address
location="http://localhost:8080/NewTrackServiceService/NewTrackService"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"/>
 </port>
 </service>
 <plnk:partnerLinkType name="NewTrackServiceLinkType">
 <plnk:role name="NewTrackServiceRole" portType="tns:NewTrackService"/>

</plnk:partnerLinkType>

 121

First is the input and output messages derived from the schema file,

second is the type of message. Document literal is employed in the above prototype

software to maintain visibility of the data content and align the software as close to the

open standards as possible. The third highlighted section contains the location of the

service. Note the “localhost” location. The prototype can run on a number of locations as

long as the IP address and port is provided. To help an individual repeating the software

“localhost” is employed to ease set up.

The final component of the NewTrackService EJB to discuss is the java

source code. A number of functions are executed by the EJB however the critical ones

include:

• Communicating with the SOAP messages

• Writing the database with the new objects

• Returning a statement that the operation is complete via a SOAP message

The first section highlighted employs the java @WebMethod class which processing the

incoming SOAP message with the new track objects.

The next section of code highlights the writing to the Microsoft access database. In order

to make the source readable some of the code is deleted. The complete source code is

available in appendix A. In this case the database write does not employ Boreland©

database query classes, but uses Java extensions to demonstrate that other methods are

@WebService
@Stateless
public class NewTrackService{
 @WebMethod
public String newTrackdb(List<combined> fusebatch){

 conn = DriverManager.getConnection("jdbc:odbc:COMBINED");
;

 122

available. Note the embedding of the objects into an INSERT SQL statement handled by

the database query method and the invocation of the driver type.

The above code represents the Reconstruction Project functionality of the prototype

software. Next we will examine the Java Servlet technology employed by the prototype

to expose the services to the Google Earth mapping software in the KML format.

4. Servlet Modules with Keyhole Markup Language

Significant debate surrounds the use of Google Earth as a tactical

mapping/visualization system. However, Google Earth has a number of attributes

making it attractive for use in the prototype. Firstly, it’s free and generally ubiquitous.

Many users are familiar with the product and how to employ it as a user. Secondly, the

interface methods are simple and utilize web service technology to communicate, making

it an excellent candidate to visualize objects. The downside to Google Earth includes the

bandwidth required to communicate with the GE server and the vulnerability associated

with relying exclusively on a commercial entity to provide mapping software. Despite

try{
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
} catch(java.lang.ClassNotFoundException e) {
 System.err.print("ClassNotFoundException: ");
 System.err.println(e.getMessage());
}
…. Iterator<combined> comIter = fusebatch.iterator();
 while(comIter.hasNext()) {
 combined c = comIter.next();
 comlat = c.getcombLat();
 comlon = c.getcombLon();
 comname = c.getcombName();
 Statement stmt;
 try {
 stmt = conn.createStatement();
 stmt.executeUpdate("INSERT INTO Combined VALUES
('"+comname+"',"+comlat+","+comlon+")");
 } catch (SQLException ex) {
 ex.printStackTrace();
 }
 }

 123

the obstacles associated with Google Earth, GE combined with the legacy software

developed by the author and described earlier in this section provided a suitable

capability working with Iraqi Engineers and private security entities that did not have a

clearance to use DoD mapping software. Additionally, Google Earth provides a good

environment to validate the three tier model associated with this dissertation.

Google provides extensive documentation on how to communicate with Google

Earth via its Keyhole Markup Language (KML). KML is a XML based schema that

allows the developed to describe an object that Google Earth can display as an overlay in

its mapping software. Two general methods are employed to communicate with Google

Earth. One is a static file download, where a KML file is opened by a GE user and the

overlay is loaded into GE. The second method is a dynamic connection between a servlet

and a Google Earth client instance. The first method is employed by the traditional

application developed by the author; the second dynamic method is employed by the

prototype software. Figure 9 below shows the general architecture of the dynamic

system.

Figure 44. Dynamic Google Earth System Architecture

Sun
Application

Server

Microsoft
Access
DB

Protype
Servlet

JDBC

http://localhost:8080/sampleServletKeyhole Markup Language

 124

Three servlets are employed in the prototype to provide KML formatted data to Google

Earth. These servlets are;

• A Significant Attack (SIGACT) servlet that shows the attacks over a given

period.

• A Reconstruction Project servlet that shows the reconstruction projects for a

given infrastructure category (i.e. Justice, Water, Defense, Education)

• A New Track servlet that shows the new tracks created by the fused product

of the SIGACT and Reconstruction Project servlets.

The next section will detail those three servlets.

5. SIGACT KML Servlet

The first servlet we will review provides a dynamic KML formatted message to

Google Earth. The architecture employs a ReST model and does not use SOAP messages

but rather sends the data directly over HTTP using the doGet and doPost java methods.

We will examine two files for the servlet. One is the KML file that Google Earth opens

that provides the location and refresh rate of the servlet, the other is the servlet source

code. Similar to the previous sections only critical portions of the source code are placed

in the gray boxes with all the source code available in appendix A and binaries available

from the Naval Postgraduate School.

The XML file below is opened by Google Earth to direct the client to interface

with a servlet to obtain overlays. The first highlighted section provides the location of

the servlet. As in previous sections, localhost is employed to assist in duplicating the

prototype, however any IP address or port can be employed. Note the two parameters

embedded in the URL. They include a start and stop date. Those dates are used by the

servlet to obtain the period desired by the user. The second highlighted section in a red

box shows the desired refresh rate. In this case the 45 seconds, directs the client to

execute a refresh from the servlet at the determine interval.

 125

Next let’s examine the Java Servlet source code. The servlet conducts a number

of functions to include:

• Performing the doGet function and receive the parameters from the URL

• Conduct an SQL query of the SIGACT database for the period prescribed

by the parameters

• Convert the results of the SQL query into a KML formatted message

• Push the results to the Google Earth client employing the doGet method

We will examine the major processing logic in the below section.

The first section of source code highlighted below shows the doGet(HttpServlet

request and response) method. Note the start and finish parameters are called using a

request.getParameter call that looks for the start and finish string variables. Also note the

CONTENT_TYPE output format of text/html. This sets the output of the servlet

response.

<?xml version="1.0" encoding="UTF-8"?>
<NetworkLink>
 <description>Track Updates Every 45 Seconds</description>
 <name>Significent Attack Postion Feed</name>
 <visibility>0</visibility>
 <url>http://localhost:8080/sigactKMLV3/learnerServ?start=07-01-
2000&finish=07-01-2008</url>
 <refreshPeriod>45</refreshPeriod>
 <refreshVisibility>1</refreshVisibility>
</NetworkLink>

 126

The next section of source code will examine the database query action. In the

case of the KML servlets we employ the boreland© database methods to conduct the

queries. The first highlighted section shows the embedding of the start and finish dates in

the SQL query. The second highlighted section shows the database interface driver.

public class sigactMLV3 extends HttpServlet {
 private static final String CONTENT_TYPE = "text/html";
 Database database1 = new Database();
 QueryDataSet queryDataSet1 = new QueryDataSet();
 DBDisposeMonitor dBDisposeMonitor1 = new DBDisposeMonitor();

 //Process the HTTP Get request
 public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

 String start = request.getParameter("start");
 String finish = request.getParameter("finish");

 Timestamp OccuredWhen;
 String EventType = "begin";
 String Name = "null";
 String Relative = "null";
 String Location = "null";
 String MGRS = "null";
….

queryDataSet1.setQuery(new com.borland.dx.sql.dataset.QueryDescriptor(database1,
"SELECT
SIGACT.EventType,SIGACT.EventCategory,SIGACT.OccuredWhen,SIGACT.Poste
dWhen,SIGACT.region,SIGACT.MGRS,SIGACT.PrimaryTarget,SIGACT.TargetCat
egory,SIGACT.City,SIGACT.Province FROM \"C:\\Documents and
Settings\\kjrothen\\My Documents\\SIGACT\".SIGACT"
 + " WHERE OccuredWhen BETWEEN #" + start + "# AND #" + finish + "# ", null,
true, Load.ALL));

database1.setConnection(new
com.borland.dx.sql.dataset.ConnectionDescriptor("jdbc:odbc:SIGACT", "", "", false,
"sun.jdbc.odbc.JdbcOdbcDriver"));

 127

The final section we will examine is the KML formatting code. The KML format

is documented via Google Earth’s tutorial [GOOGLE EARTH], however some key

elements are highlighted below. The top section of the KML file is a header which

describes attributes such as icon and label style, the second portion of the KML file is a

repeating element where each object is described. For the file shown below, first note the

icon and label style descriptions, which provide the Google Earth client with icon and

label font information for each object. The second highlighted section shows the

procedure employed to write the output of the database to the KML document. The

prototype uses an while loop based on remaining objects in the query set. The third

highlighted section shows where a conversion from Military Grid Reference System to

latitude and longitude is executed using the position method. The EJB section has a more

detailed explanation of the MGRS to LL conversion, however the source code is adapted

from National Geo-spatial Agency (NGA) source code available via the NGA site and

employed by the eXtensible Tactical C4I Framework (XTCF) project at SPAWAR San

Diego labs. The final section highlighted is where the latitude and longitude position is

placed in the KML file.

 128

 out.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
 out.write("<kml xmlns=\"http://earth.google.com/kml/2.0\">\n");
 out.write("<Document>\n");
 out.write("<name> USACE Map Creater (SIGACT)</name>\n");
 out.write("<open>1</open>\n");
 out.write("<description><![SAMPLE DATA]></description>\n");
 out.write("<Style id=\"Standard\">");
 out.write(" <IconStyle>\n");
 out.write(" <color>ff0000ff</color>\n");
 out.write(" <Icon>\n");
 out.write(" <href>root://icons/palette-4.png</href>\n");
 ….
 out.write("</IconStyle>\n");
 out.write("<LabelStyle>");
…..
 out.write("<name>SIGACT " + start + " to " + finish + "</name>\n");
 out.write("<open>0</open>\n");
 out.write("/Folder>\n");

 queryDataSet1.first();

 while (queryDataSet1.inBounds()) {
 ++mapcountstart;
 // String style = "";
 EventType = queryDataSet1.getString("EventType");
 String EventCategory = queryDataSet1.getString("EventCategory");
 OccuredWhen = queryDataSet1.getTimestamp("OccuredWhen");

 MGRS = queryDataSet1.getString("MGRS");
 String MGR = MGRS.replaceAll(" ", "");
 Position R = MGRStoLat(MGR);

 userlat = R.getLat();
 userlon = R.getLng();

 String klmString = "<Placemark>\n"
 + "<name>"+ EventCategory+ "</name>\n"
 +"<description><![CDATA[Name-"+ EventType + "
 Occured-" +
 OccuredWhen + "
 Target-" + PrimaryTarget +…
 + "<styleUrl>#Standard</styleUrl>\n"
 + "<coordinates>"+userlon+","+userlat+"</coordinates>\n"
 + "</Point>\n"
 + "</Placemark>\n";
 out.write(klmString);

 129

This section documented the SIGACT servlet, we will next examine the Reconstruction

Project Servlet.

6. Reconstruction Project KML servlet.

The second servlet we will review provides a dynamic KML formatted message

to Google Earth. The architecture employs a ReST model and does not use SOAP

messages but rather sends the data directly over HTTP using the doGet and doPost java

methods. We will examine two files for the servlet. One is the KML file that Google

Earth opens that provides the location and refresh rate of the servlet, the other is the

servlet source code.

The XML file below is opened by Google Earth to direct the client to interface

with a servlet to obtain overlays. The first highlighted section provides the location of

the servlet. As in previous sections, localhost is employed to assist in duplicating the

prototype, however any IP address or port can be employed. Note the single parameter,

sector embedded in the URL. The sector variable is used by the servlet to obtain the

reconstruction sector desired by the user, in this case the electric sector “ELEC” is

desired. The second highlighted section in a red box shows the desired refresh rate. In

this case the 45 seconds, directs the client to execute a refresh from the servlet at the

determine interval.

Next let’s examine the Java Servlet source code. The servlet conducts a number

of functions to include:

• Performing the doGet function and receive the parameters from the URL

<?xml version="1.0" encoding="UTF-8"?>
<NetworkLink>
 <description>Track Updates Every 45 Seconds</description>
 <name>Iraq Reconstruction Projects</name>
 <visibility>0</visibility>
 <url>http://localhost:8080/iraqdemoproj/iraqdemoprojsev?sector=ELEC</url>
 <refreshPeriod>45</refreshPeriod>
 <refreshVisibility>1</refreshVisibility>
</NetworkLink>

 130

• Conduct an SQL query of the RECON database for the sector prescribed

by the parameter.

• Convert the results of the SQL query into a KML formatted message

• Push the results to the Google Earth client employing the doGet respond

method

The first section of source code highlighted below shows the doGet(HttpServlet

request and response) method. Note the sector parameter is called using a

request.getParameter call that looks for the sector string variable. Also note the

CONTENT_TYPE output format of text/html. This sets the output of the servlet

response.

The next section of source code will examine the database query action. In the

case of the KML servlets we employ the boreland© database methods to conduct the

queries. The first highlighted section shows the embedding of the sector variable in the

SQL query. The second highlighted section shows the database interface driver.

public class reconKML extends HttpServlet {
 private static final String CONTENT_TYPE = "text/html";
 Database database1 = new Database();
 QueryDataSet queryDataSet1 = new QueryDataSet();
 DBDisposeMonitor dBDisposeMonitor1 = new DBDisposeMonitor();
…
 //Process the HTTP Get request
 public void doGet(HttpServletRequest request, HttpServletResponse response) throws
ServletException, IOException {

 String sector = request.getParameter("sector");
 Timestamp OccuredWhen;
 String ProjName = "begin";
 String tempQuery = "null";
 String ProjectID = "null";
 String Contractor = "null";
 String ExecutingAgency = "null";
 ….

 131

The final section we will examine is the KML formatting code. The KML format

is documented via Google Earth’s tutorial [GOOGLE EARTH], however some key

elements are highlighted below. The top section of the KML file is a header which

describes attributes such as icon and label style, the second portion of the KML file is a

repeating element where each object is described. For the file shown below first note the

icon and label style descriptions, which direct the Google Earth client which icon and

label font to display for each object. The second highlighted section shows the procedure

employed to write the output of the database to the KML document. The prototype uses

a while loop based on remaining objects in the query set. The third highlighted section

shows where a conversion from Military Grid Reference System to latitude and longitude

is executed using the position method. The EJB section has a more detailed explanation

of the MGRS to LL conversion, however the source code is adapted from National Geo-

spatial Agency (NGA) source code available via the NGA site and employed by the

eXtensible Tactical C4I Framework (XTCF) project at SPAWAR San Diego labs. The

final section highlighted is where the latitude and longitude position is placed in the KML

file.

 queryDataSet1.setQuery(new com.borland.dx.sql.dataset.QueryDescriptor(database1,
"SELECT RMS_ALL.SHORT_NAME,RMS_ALL.URI,RMS_ALL.GRID_LOCATION" +
 " FROM \"C:\\Documents and Settings\\kjrothen\\My Documents\\RMS_ALL\".RMS_ALL" +
 " WHERE SECTOR = '"+sector+ "' ", null, true, Load.ALL));

 database1.setConnection(new
com.borland.dx.sql.dataset.ConnectionDescriptor("jdbc:odbc:RMS_ALL", "", "", false,
"sun.jdbc.odbc.JdbcOdbcDriver"));
 database1.setUseCaseSensitiveId(true);
 database1.setUseSpacePadding(false);
 database1.setDatabaseName("");
 queryDataSet1.open(); …

 132

 out.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
 out.write("<kml xmlns=\"http://earth.google.com/kml/2.0\">\n");
 out.write("<Document>\n");
 out.write("<name> USACE Map Creater</name>\n");
 out.write("<open>1</open>\n");
 out.write(
 "<description><![CDATA[SAMPLE/]></description>\n");
 out.write("<Style id=\"ELE\">");
 out.write(" <IconStyle>\n");
 out.write(" <color>FFFF55FF</color>\n");
 out.write(" <Icon>\n");
 out.write(" <href>root://icons/palette-4.png</href>\n");
 out.write("<LabelStyle>");
 out.write(" <color>ffb3cefc</color>\n");
 out.write("<scale>1.1</scale>");
 out.write("</LabelStyle>");
 queryDataSet1.first();

 while (queryDataSet1.inBounds()) {

 String style = "";
 ProjName = queryDataSet1.getString("SHORT_NAME");
 String MGRS = queryDataSet1.getString("GRID_LOCATION");

 Position R = MGRStoLat(MGRS);

 userlat = R.getLat();
 userlon = R.getLng();

 String klmString = "<Placemark>\n"

 + "<styleUrl>" + style + "</styleUrl>\n"
 + "<Point>\n"
 + "<extrude>0</extrude>\n"
 + "<altitudeMode>clampedToGround</altitudeMode>\n"
 + "<coordinates>" + userlon + "," + userlat +
 "</coordinates>\n"
 + "</Point>\n"
 + "</Placemark>\n";

 133

This section documented the Reconstruction Project servlet, we will next examine the

New Track servlet.

7. New Track KML servlet.

The last servlet we will review provides a dynamic KML formatted message to

Google Earth with the new tracks created from the fused content of the SIGACT and

Reconstruction Project. The architecture employs a ReST model and does not use SOAP

messages but rather sends the data directly over HTTP using the doGet and doPost java

methods. We will examine two files for the servlet. One is the KML file that Google

Earth opens that provides the location and refresh rate of the servlet, the other is the

servlet source code.

The XML file below is opened by Google Earth to direct the client to interface

with a servlet to obtain overlays. The first highlighted section provides the location of

the servlet. As in previous sections, localhost is employed to assist in duplicating the

prototype, however any IP address or port can be employed. Note in this case no

parameters are embedded in the URL. One can imagine a case where a parameter such as

type of track, friend lies or hostiles, or any number of criteria could be employed,

however for this servlet none were required. The second highlighted section in a red box

shows the desired refresh rate. In this case the 45 seconds, directs the client to execute a

refresh from the servlet at the determine interval.

Next let’s examine the Java Servlet source code. The servlet conducts a number

of functions to include:

<?xml version="1.0" encoding="UTF-8"?>
<NetworkLink>
 <description>Track Updates Every 45 Seconds</description>
 <name>Fused Track Feed</name>
 <visibility>0</visibility>
 <url>http://localhost:8080/combinedKML/learnerServ</url>
 <refreshPeriod>45</refreshPeriod>
 <refreshVisibility>1</refreshVisibility>
</NetworkLink>

 134

• Performing the doGet function and receive the parameters from the URL

• Conduct an SQL query of the Combined database for all the objects.

• Convert the results of the SQL query into a KML formatted message

• Push the results to the Google Earth client employing the doGet method

We will examine the major processing logic in the below section.

The first section of source code highlighted below shows the doGet(HttpServlet

request and response) method. Note that no parameters are called using

request.getParameter. Also note the CONTENT_TYPE output format of text/html. This

sets the output of the servlet response.

The next section of source code will examine the database query action. In the

case of the KML servlets we employ the boreland© database methods to conduct the

queries. The first highlighted section shows the SQL query. The second highlighted

section shows the database interface driver.

public class combinedKML extends HttpServlet {
 private static final String CONTENT_TYPE = "text/html";
 Database database1 = new Database();
 QueryDataSet queryDataSet1 = new QueryDataSet();
 DBDisposeMonitor dBDisposeMonitor1 = new DBDisposeMonitor();

 //Process the HTTP Get request
 public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

 int mapcountstart = 0;
 double userlon = 0;
 double userlat = 0;
 int i = 1;
..

 135

The final section we will examine is the KML formatting code. The KML format

is documented via Google Earth’s tutorial [GOOGLE EARTH], however some key

elements are highlighted below. The top section of the KML file is a header which

describes attributes such as icon and label style, the second portion of the KML file is a

repeating element where each object is described. For the file shown below first note the

icon and label style descriptions, which direct the Google Earth client which icon and

label font to display for each object. The second highlighted section shows the procedure

employed to write the output of the database to the KML document. The prototype uses

a while loop based on remaining objects in the query set. The final section highlighted is

where the latitude and longitude position is placed in the KML file.

queryDataSet1.setQuery(new com.borland.dx.sql.dataset.QueryDescriptor(database1,
"SELECT Combined.Name,Combined.ComLat,Combined.ComLon" +
 " FROM \"C:\\Documents and Settings\\kjrothen\\My
Documents\\combined\".Combined", null, true, Load.ALL));
 database1.setConnection(new
com.borland.dx.sql.dataset.ConnectionDescriptor("jdbc:odbc:combined", "", "", false,
"sun.jdbc.odbc.JdbcOdbcDriver"));

 136

 out.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
 out.write("<kml xmlns=\"http://earth.google.com/kml/2.0\">\n");
 out.write("<Document>\n");
 out.write("<name> Combined Track Objects</name>\n");
 out.write("<open>1</open>\n");
 out.write("<description><![CDATA[UNCLASS//FOUO//
]]></description>\n");
 out.write("<Style id=\"Standard\">");
 out.write(" <IconStyle>\n");
 out.write(" <color>ff00aa00</color>\n");
 out.write(" <Icon>\n");
 out.write(" <href>root://icons/palette-4.png</href>\n");
 out.write(" <x>32</x>\n");
 out.write(" <y>128</y>\n");
 out.write(" <w>32</w>\n");
 out.write(" <h>32</h>\n");
 out.write(" </Icon>\n");
 out.write("</IconStyle>\n");
 out.write("<LabelStyle>");
 out.write(" <color>ff0000ff</color>\n");
 out.write("<scale>1.1</scale>");
 out.write("</LabelStyle>");
 out.write("</Style>\n");
 out.write("<colorMode>normal</colorMode>");
 QueryDataSet1.first();

 while (queryDataSet1.inBounds()) {
 ++mapcountstart;
 // String style = "";
 String Name = queryDataSet1.getString("Name");
 userlat = queryDataSet1.getDouble("ComLat");
 userlon = queryDataSet1.getDouble("ComLon");

 String klmString = "<Placemark>\n"
 + "<name>"+ Name + "</name>\n" +
 // +"<description><![CDATA[Name-"+ EventType + "
 Occured-" +
 // OccuredWhen + "
 Target-" + PrimaryTarget +

 "<styleUrl>#Standard</styleUrl>\n"
 + "<Point>\n"
 + "<extrude>0</extrude>\n"
 + "<altitudeMode>clampedToGround</altitudeMode>\n"
 + "<coordinates>"+userlon+","+userlat+"</coordinates>\n"
 + "</Point>\n"

+ "</Placemark>\n";

 137

This section documented the New Track Servlet, next we will examine the Business

Process Execution Language segments of the prototype software.

8. Business Process Execution Language Modules (BPEL)

Business Process Execution Language for web-services (BPEL4WS) is an open

WS standard for Service Oriented Architecture orchestration. The purpose of the

orchestration segment is to coordinate a group of other web-services. In the case of the

prototype system, BPEL takes the values from the initial services, obtains the results, and

pushes them into the fusion service. The final result is passed back to the BPEL module

and the process completes. In this section we will examine two segments of processing

logic, first is the BPEL process XML schema or XSD file, the second is the BPEL XML

file. Note the input element matches the required input variables for both the SIGACT

and Reconstruction Project EJB’s.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://xml.netbeans.org/schema/newXMLSchema"
 xmlns:tns="http://xml.netbeans.org/schema/newXMLSchema"
 elementFormDefault="qualified">
 <xsd:complexType name="processGeoTrackFusion">
 <xsd:sequence>
 <xsd:element name="SigactStart" nillable="true" type="xsd:string"/>
 <xsd:element name="SigactFinish" nillable="true" type="xsd:string"/>
 <xsd:element name="Sector" nillable="true" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="processGeoTrackFusionResponse">
 <xsd:sequence>
 <xsd:element name="return" nillable="true" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="processGeoTrackFusionResponse"
type="tns:processGeoTrackFusionResponse"/>
 <xsd:element name="processGeoTrackFusion"
type="tns:processGeoTrackFusion"/>
</xsd:schema>.

 138

The next code snippet is the BPEL execution file. BPEL employs a number of

standard functions, however the prototype employs invoke, assign, flow start and receive

only. Netbeans 5.5 provides a graphical BPEL designer that allows the developer to

rapidly create the process and map the elements. In the section below, note the

declaration of the partner links. Each of the EJB’s employed in the “GeoTrackFusion”

process.

<?xml version="1.0" encoding="UTF-8"?>
<process
 name="GeoTrackFusion"
 targetNamespace="http://enterprise.netbeans.org/bpel/GeoTrackFusion"
 xmlns="http://schemas.xmlsoap.org/ws/2004/03/business-process/"
 ….
<partnerLinks>
 <partnerLink name="NewTrackEJB"
partnerLinkType="ns5:NewTrackServiceLinkType"
partnerRole="NewTrackServiceRole"/>
 <partnerLink name="GeoFuserEJB"
partnerLinkType="ns4:GeoTrackFusionLinkType"
partnerRole="GeoTrackFusionRole"/>
 <partnerLink name="ReconEJB"
partnerLinkType="ns3:ReconProjectEJBLinkType"
partnerRole="ReconProjectEJBRole"/>
 <partnerLink name="SigactEJB"
partnerLinkType="ns2:BaseSigactEJBLinkType"

 139

The next section of the BPEL file highlights the initial assign functions.

BPEL permits reuse of services in any number of processes. In the case of the

prototype, we employ a simple process, however the ability to mix and match new

services and fusion engines is the potential gains associated SOA and orchestration.

D. FUSION DISCOVERY PROTOTYPE

One of the essential elements of a SOA is the concept of service discovery.

Discovery is the method by which the existence and location of a service resides.

 <sequence>
 <receive name="ReceiveFromBpel" createInstance="yes"
partnerLink="GeoTrackFusionBpel" operation="GeoTrackFusionOperation"
portType="ns1:GeoTrackFusionPortType"
variable="GeoTrackFusionOperationInput"/>
 <assign name="Assign1">
 <copy>

<from>$GeoTrackFusionOperationInput.Fusionmessage/ns0:SigactStart</from>
 <to>$ProcessBaseSIGACTEJBInput.parameters/arg0</to>
 </copy>
 <copy>

<from>$GeoTrackFusionOperationInput.Fusionmessage/ns0:SigactFinish</from>
 <to>$ProcessBaseSIGACTEJBInput.parameters/arg1</to>
 </copy>
 <copy>
 <from>$GeoTrackFusionOperationInput.Fusionmessage/ns0:Sector</from>
 <to>$GetReconProjectInput.parameters/Sector</to>

 140

Figure 45. Auto-Fusion Discovery Application

As discussed in previous sections, auto-fusion provides a motivation for

investment in a SOA. Integrating the previously discussed Auto-Fusion Figure of Merit

into a discovery application allows a user or system to determine which fusion pairs and

algorithms make sense. The source code below is an XML configuration file with pre-set

values that when combined with the meta-data provided by the services allows the

computation of the figure of merit. The prototypes goal is to assess what meta-data is

required vice validating if a UDDI supports the role. Further research into UDDI is

required to determine if a UDDI T-model notion supports the type of meta-data required

to determine an auto-fusion FOM.

 141

E. HOW THE PROTOTYPE VALIDATES THE THREE TIER MODEL

The goal of the trickle-up pattern is to separate the processing logic of the data

object from the fusion logic, to support system agility. Present system architectures

hardwire fusion logic to the data source or even conduct fusion logic directly on the

database. This strongly coupled architecture results in significant difficulty in changing

fusion algorithms and does not support a SOA environment. In the prototype each

service operates independently and is only chained when BPEL drives a fusion process.

This validates the potential viability of the architecture, however limitations remain using

web-enabled SOA in fusion systems.

F. LIMITATIONS OF THE PROTOTYPE SOFTWARE AND
RECOMMENDATION FOR FURTHER VALIDATION

The prototype demonstrates a separation of processing along SOA lines and

advances the ability to plug and play different data sources and fusion engines. Although

promising, a number of limitations exist. The central limitation stems from the need for a

<?xml version="1.0"?>
<!--Configuration file for AutoFusion prototype-->
<FusionConfig>
 <vectorOne>
 <!--Desired computational complexity: low=2, med=5, high=10-->
 <computationalComplex>low</computationalComplex>
 </vectorOne>
 <vectorTwo>
 <!--Desired computational complexity:
limited=11KBPS,moderate=1mbps, LAN 11MBPS-->
 <networkComplex>limited</networkComplex>
 </vectorTwo>
 <vectorThree>
 <!--Desired Joint Director of Labs target fusion outcome
level###(One,Two,Three,Four)-->
 <JDLpreferred>levelTwo</JDLpreferred>
 </vectorThree>
</FusionConfig>

 142

common XML data object definition. For example, each service has an independent

XML schema that drives a WSDL definition and the BPEL has its own too, which

supports the orchestration, but to truly employ services without recompiling code requires

a shared schema. Additionally, a number of fusion actions are time of receipt based, and

employ embedded processors in a deterministic fashion. Porting those algorithms to a

SOA web-service could prove difficult, especially in weapons grade, real-time systems.

 143

IX. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE
RESEARCH

In the course of the research, I made a few observations as they relate to applying

SOA technologies to DoD system challenges. These observations include a general

migration of capabilities to internet technologies, a change in market leadership in the

technical IT field and approaches for transitioning SOA technologies from laboratory to

warfighter. In this final section we will first review the results of the research, discuss

some of the observations described above and close with recommendations for future

research.

The research started with a challenge of increasing volume of data and info and a

potentially dramatic increase from exposing data using SOA technologies. To manage

the data in a control and monitoring domain the research proposed use of two software

patterns and a data fusion process. Using Gamma’s standard design pattern definitions

the research detailed the zone and trickle-up patterns. Next the research discussed the

application of the patterns in a command and control challenge associated with the

Navy’s Maritime Domain Awareness system, and developed a prototype software system

using SOA technologies to validate the patterns and process. Specifically the research

validated the following:

• On the SOA data layer or infrastructure side we demonstrated the viability of

the trickle-up pattern for a simple fusion problem, showing how we can

divide the processing logic of the service from the fusion engine. At this phase

you can readily see the need for a standard ontology and data schema. This

type of semi-dynamic binding would be impossible without extensive

knowledge of the meta-data. A common “track” definition is critical to this

type of architecture.

• For control and monitoring software systems we detailed the Zone pattern,

which discusses a distributed approach to sensor data management that

employs the content developed by the trickle-up pattern and departs from both

the user defined operational picture (UDOP) approach of all sensor data

 144

migrating into a core or the traditional “all data push” employed by the current

Joint Global Command and Control System.

• Research prototype demonstrated use of SOA web-service based orchestration

(BPEL) to administer a data fusion process.

• Research prototype demonstrated an Auto-Fusion discovery method along

with a figure of merit method based on network costs, computational costs and

potential fusion “benefit” based on the four level fusion model and employing

the trickle-up pattern.

• Research explored impacts of an auto-fusion requirement as a broad Data

Strategy goal for the Maritime Domain Awareness system.

In the following section we will discuss some general observations and recommendations

from the research and close with some recommendations for future research.

In 1989 the Defense Communication Agency (now DISA) established the internet

as a commercial activity and split the non-military segments of ARPANET to a

consortium of government, industry and academic leaders (Hobbes', 2). Early adopters

quickly realized the potential of the network, however it still took some years for

applications to gain wide acceptance. Some of the hurdles stemmed from the complexity

of the PC user interface as compared with a telephone or television set, while other

hurdles stemmed from cost and availability of applications on the internet. One of the

methods to spur adoption of new technologies was the availability of shareware or

freeware products. For example, early adopters to the internet found little compelling

content or applications, however a freeware product known as Mosaic (a freeware HTML

browser), opened hyperextend images and graphics to a wider array of users, and put a

“friendly” face on the Internet’s content. Mosaic put a “face” on the internet lowering the

technological barrier of entry of users into the content of the internet. In a similar fashion,

Service Oriented Architectures for DoD applications too require a “face” and more

importantly a capability. DoD sponsored SOA demonstrations such as Horizontal Fusion

(OSD), Net Centric Capabilities Pilot (DISA) and Sea-Trial (ONR) provide venues to put

an operational face of SOA’s and have done so with reasonable success, despite the

difficulties of articulating benefits whose real potential do not manifest themselves until a

 145

critical mass occurs and systems are widely adopted. The zone and trickle-up pattern

provide a “face” to a control and monitoring domain software, which articulates to

developers the three relationships a C2 monitoring system must enable and the sources

they need. This “face” of SOA is a data management tool which manages the dynamic

discovery and addition of content at runtime of data sources operating on a trickle-up

SOA, such as TADIL, ELINT, SIGINT, raw and processed intelligence. This face or

“Kmart COP” is the “last mile” managing the complexity of the architecture. To deliver

the critical mass desired a Kmart COP must ride on a suitable SOA that too is non-

proprietary in its binding between clients and data sources as discussed earlier in the

research. Additionally, the Kmart COP tool set must extend the authority and user

experience of collaborative systems to managing an approved common operations picture

as discussed in MDA CONOPS section of this paper. To gain initial user acceptance the

tool must improve some near term user requirement, allowing a gradual adoption of the

additional data richness and functionality. For example, when Microsoft first marketed

the Outlook email program, users did not utilize much of the calendar and tasking tools

provided. However over time, these tools gained wide acceptance and drove users to

demand the increased functionality associated with using a Microsoft exchange server. In

a similar fashion, Kmart COP, must provide an initial capability of access to present data,

display it and allow the creation of a owned COP that can be collaborated on in and

integrated application. Specifically, the tool must:

• Provide for the dynamic discovery of SOA track sources (trickle-up).

• Provide capability to add and remove data sources at run time (trickle-up).

• Provide integrated collaborative software between the data and the

visualization segment (zone pattern).

• Provide a mapping/visualization segment.

• Provide mechanism to dynamically subscribe to other Kmart COP’s and

integrate their managed pictures into a common picture (zone pattern)

 146

• Leverage the capability of SOA segments to uniquely identify messages to

provide a unique identification tag to mitigate data ringing (duplicative tracks

displayed for the same contact).

• Conduct the data-management in a method to efficiently utilize bandwidth to

support a disconnected or limited bandwidth user base.

In the preceding section we discussed observations relating to taking the zone and trickle-

up pattern inspired software and migrating them from laboratory to warfighter, the next

section discusses how the DoD is no longer the leader in information technology and

needs to adopt from leader to participant in information technology standard development

as well as recommendations of how acquisition managers can approach SOA

technologies.

Post World War II, defense contractors led industry in the development of high

tech communications and computing systems. The defense industries lead began to fade

during the 1980’s as personnel electronics and computing systems developed for

commercial use proliferated. Presently commercial industry leads many of the high tech

factors and hence drives many of the commercial standards. Utilization of these

commercial standards significantly saves the DoD resources by shifting development

costs to industry. Since the DoD is a large consumer of industry standards based systems

it must maintain active participation in standard committee’s and development boards.

An additional requirement beyond interoperability standard development is the

development of non-proprietary systems. These non-proprietary systems can maintain

interoperability and extensibility while employing the incentives of industry

development. The Net-Centric Enterprise Solutions for Interoperability (NESI) method

provides critical contracting language and references to develop non-proprietary military

systems (NESI, Vol 1). Beyond NESI, initial core systems should be developed with

strong government oversight. A potential solution is to focus initial development on

multi-contractor supported, government led development in government labs such as

SPAWAR System Centers. Only with tight government oversight can a product without

hidden hooks be developed and initially deployed. That is not to say, SOA’s have no

 147

place for proprietary products and segments. In reality SOA’s can foster small businesses

participation by lowering integration costs and increased sharing of solutions that an open

SOA provides. The first brave steps however, must be made by agents of the government.

A great deal of written material is available discussing the shortfalls of present

Command and Control systems, and extolling the virtues of a net-centric and service-

oriented architectures (SOA). Books such as Power to the Edge and Net-Centric Warfare

detail many of the why’s of SOA (Alberts, 15), this research rather focused on answering

some of the how’s. Overall the message from the research is to demonstrate that although

in the past, technology and bandwidth limited the potential for a SOA or web-based

architecture for DoD solutions; the present state of the technology is in-fact mature

enough to start fielding real systems that employ some of the technologies provided by

web-enabled SOA’s.

Service Oriented Architectures offer a compelling solution to a number of the

Navy’s command and control data management needs. A significant departure from

existing technologies and methods, there are both acquisition and warfighter doctrinal

impacts. A change in tool utilization alone will not deliver the results the DoD requires,

doctrine must be altered concurrently. Additionally, some of SOA’s potential gains

require a level of openness that runs contrary to the culture of defense contractors. This

is not to say that all applications need to be non-proprietary/open source, just that the core

communications between the services and specifications need to remain non-proprietary

and vendor neutral to maximize open communications between systems and realize the

transformation in Command and Control required to make FORCEnet a reality.

The dilemma acquisition managers have today remain unchanged since sword

makers in Athens toiled with metallurgy; balancing the risks of new technologies, in a

resource constrained environment against the demands to maintain present capabilities.

Program offices answer to a chorus of various entities to become more “transformational”

while functioning in the real world of maintaining and upgrading an existing system, and

fielding systems in an extremely challenging fiscal environment. Despite, these obstacles

 148

however, we need to take the next steps toward a net-centric vision and address the real

and pressing poor record of both a technology refresh and expanded capabilities in the C2

field.

A. RECOMMENDATIONS FOR FUTURE RESEARCH

Numerous future research topics exist in the SOA domain, especially as it relates

to using wed-service DoD technologies to address interoperability challenges. The use of

web-based SOA framework for tactical uses in particular, creates a series of challenges

relating to adopting what is essentially a business oriented solution to the rigors of a

combat requirement. Quality of service topics such as reliability, security and

maintainability require evaluation as well as topics to determine how well SOA based

systems perform in a netcentric environment where high latency and low bandwidth are

common. The following are a list of potential topics:

 SOA Discovery Methods

In this research the prototype discovery method was not build on an industry

standard. A future research endeavor would include adapting the auto-fusion figure of

merit to a web service registry standard such as Universal Discovery Directory Index

(UDDI) or enterprise business extensible markup language (ebXML) methods.

Interesting challenges surround adopting the registry descriptions of the trickle-up pattern

of reports, tracks and entities to the UDDI T-model structure. Additionally, since the

UDDI standard does not define data elements to support a rules based determination of

service pair selection, interesting research potentially can focus on where in a SOA

framework should the logic reside to determine which services are potential fusion

partners.

 SOA Eventing Methods

 In this research the prototype employed stateless web-service SOA architecture to

support the research goals. Potentially future research can examine using an Enterprise

Service Bus (ESB), Java Messaging Service (JMS) or Web Service (*WS) Eventing

based SOA architectures to support a more dynamic environment. Adapting the Business

Process Execution Language for web services (BPEL4WS) to operate on a set of JMS

topics for a defined time period would be an interesting challenge. Additional topics

 149

along the same lines could include network performance challenges, data in transit

security issues as well as the challenge in adapting the BPEL engine to orchestrate a

continuous process.

 Data Models and Ontology’s

 The research presented in this paper touched on data schemas and models, but the

prototype software employed only simple XML data definitions of a globally unique

identification, name and position. The DoD meta-data registry has a number of

Command and Control or Intelligence Surveillance and Reconnaissance data definitions

and schemas to employ. As discussed previously a standard data definition is critical for

the type of late-binding advocated by the research to support auto-fusion.

 SOA Framework

Frank Bushmann in his text Pattern Oriented Software Architecture defines an

application framework as an “integrated set of components that collaborate to provide

reusable software architecture for a family of related applications” (Bushmann, 554).

Figure 46. Pattern and Process Research Framework

Remote
Trickle-up

Service

Shared Services
- Storage
- Orchestration (Trickle-up)
- Discovery

Trickle-up Services
- Entity Services
- Track Services
- Report Services

Zone Module
- Source Manager
- Participant Manager
- Consumer Manager

Server A
J2EE Host

Shared Services
- Storage
- Orchestration (Trickle-up)
- Discovery

Trickle-up Services
- Entity Services
- Track Services
- Report Services

Zone Module
- Source Manager
- Participant Manager
- Consumer Manager

Server B
J2EE Host

HTTP

Legacy
Data Feed

 150

The same concept can be applied to a SOA framework discussed in this dissertation. The

trickle-up and zone pattern, supported by a web service SOA framework and executing

the auto-fusion process provides an interesting control and monitoring software

framework.

 The physical manifestation of an auto-fusion framework is a collection of

services on a system platform with interoperability maintained by open standard web-

service transports. Figure 46 shows a reference implementation of the two patterns and

process discussed in the dissertation. Additionally, figure 46 shows two separate servers,

with a J2EE compliant web-hosting environment. The J2EE environment provides web-

hosting, discovery, and orchestration services, for both the zone and trickle-up pattern

services. The discovery service registers the pattern services and coupled with the

orchestration services executes the auto-fusion process detailed in earlier sections.

Furthermore, figure 46 shows a remote trickle-up service as well as a legacy data feed

inject. The difference between the remote trickle-up and the trickle-up module in the

servers in the diagram is the absence of the shared services located on the server.

Specifically, the remote trickle up does not require orchestration and discovery. The

remote trickle-up server does however require persistence and web-hosting of some kind,

but a full suite of core or shared services is not required, hence limiting the software

footprint of a trickle-up service. Another item shown in the diagram is a legacy data

feed. These legacy feeds are critical to a migration from a non-SOA based system to a

SOA framework.

A number of future research topics surround the development of a framework

from the two patterns and process detailed in the research. These research topics include

how to federate discovery services between servers, and what data transport methods best

synchronize services. Additionally, different orchestration methods should be examined

as well as choreography (a less centralized form of orchestration).

 Trickle-up and Zone Pattern in DoD Architecture Framework

 The Department of Defense Architecture Framework (DoDAF) “enables

architecture descriptions to be compared and related across organizational boundaries,

including Joint and multinational boundaries “(DoDAF Deskguide, 1-1). DoDAF is a

 151

common description language for DoD acquisitions and is comprised of three general

views of a system; operational view (OV), system view (SV), and technical view (TV).

Although this dissertation provides SOA design and UML diagrams to aid understanding

of the trickle-up and zone pattern, developing DoDAF artifacts of the patterns could

further assist in application of the patterns. Specifically, system and technical views can

further describe the interactions between the two patterns and outside systems and an

operational view can aid in understanding the impact of the patterns on C4I system

capabilities.

 152

THIS PAGE INTENTIONALLY LEFT BLANK

 153

APPENDIX. SOURCE CODE

/*
 * BaseSigactEJB.java
 *
 * Started on April 18, 2007, 12:15 AM
 * LCDR Kurt Rothenhaus
 * Created in support of Dissertation Research
 * Service provides SOA based method to access
 * Iraq Reconstruction Project data based on sector of
 * economy (Water, Electric, Health, Justice)
 */

package com.sun.BaseSigactEJB;

import java.util.ArrayList;
import javax.ejb.Stateless;
import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebParam.Mode;
import javax.jws.WebService;
import com.borland.dx.sql.dataset.*;
import com.borland.dbswing.*;
import java.sql.Timestamp;
import java.util.List;
import javax.xml.ws.Holder;

/**
 *
 * @author kjrothen
 */

@Stateless()
@WebService()
public class BaseSigactEJB {

 Database database1 = new Database();
 QueryDataSet queryDataSet1 = new QueryDataSet();

 boolean stat = false;

 /**
 * Web service operation
 */

 154

 @WebMethod
 public List<sigact> processBaseSIGACTEJB(String sigactStart, String sigactFinish) {

 return getSigBatch(sigactStart,sigactFinish);
 }

 public List<sigact> getSigBatch(String sigactStart, String sigactFinish){

 String start = sigactStart;
 String finish = sigactFinish;

 queryDataSet1.close();

 queryDataSet1.setQuery(new com.borland.dx.sql.dataset.QueryDescriptor(database1,
"SELECT
SIGACT.EventType,SIGACT.EventCategory,SIGACT.OccuredWhen,SIGACT.PostedW
hen,SIGACT.region,SIGAC" +

"T.MGRS,SIGACT.PrimaryTarget,SIGACT.TargetCategory,SIGACT.City,SIGACT.Pro
vince " +
 "FROM \"C:\\Documents and Settings\\kjrothen\\My
Documents\\SIGACT\".SIGACT"
 + " WHERE OccuredWhen BETWEEN #" + start + "# AND #" + finish + "# ", null,
true, Load.ALL));

 database1.setConnection(new
com.borland.dx.sql.dataset.ConnectionDescriptor("jdbc:odbc:SIGACT", "", "", false,
"sun.jdbc.odbc.JdbcOdbcDriver"));
 database1.setUseCaseSensitiveId(true);
 database1.setUseSpacePadding(false);
 database1.setDatabaseName("");
 queryDataSet1.open();

 String EventType = "begin";
 String EventCategory = "null";
 String region = "null";
 Timestamp OccuredWhen = null;
 String MGRS = "null";
 String PrimaryTarget = "null";
 String TargetCategory = "null";
 String City = "null";

 155

 String Province = "null";

 List<sigact> sigie = new ArrayList<sigact>();

 while (queryDataSet1.inBounds()) {

 EventType = queryDataSet1.getString("EventType");
 EventCategory = queryDataSet1.getString("EventCategory");
 OccuredWhen = queryDataSet1.getTimestamp("OccuredWhen");

 double userlon = 1.1;
 double userlat = 2.1; //queryDataSet1.getDouble("Lat");
 region = queryDataSet1.getString("region");
 MGRS = queryDataSet1.getString("MGRS");
 String MGR = MGRS.replaceAll(" ", "");
 Position R = MGRStoLat(MGR);

 userlat = R.getLat();
 userlon = R.getLng();

 PrimaryTarget = queryDataSet1.getString("PrimaryTarget");
 TargetCategory = queryDataSet1.getString("TargetCategory");
 City = queryDataSet1.getString("City");
 Province = queryDataSet1.getString("Province");

 System.out.println(PrimaryTarget);
 System.out.println(TargetCategory);

 sigact sig = new sigact();
 sig.setAttackTarget(PrimaryTarget);
 sig.setSigLat(userlat);
 sig.setSigLon(userlon);
 sigie.add(sig);

 queryDataSet1.next();

 } //End While Loop
 queryDataSet1.close();
 return sigie;

 }

 156

public Position MGRStoLat(String Mgrs){

 UTM utm = new UTM();

 try {
 MGR.MRGtoUTM(Mgrs, utm);
 System.out.println("MRG=" + Mgrs);
 System.out.println("UTM=" + utm);
 Position p = utm.toPosition();
 System.out.println(" LL=" + p);
 double lat = p.getLat();
 double lng = p.getLng();
 return p;
 }
 catch (Exception e) {
 MGR.MRGtoUTM("01NGD1200015000", utm);
 Position p = utm.toPosition();
 System.out.println("Catch the exception =" + p);
 return p;
 }
 }

}

package com.sun.BaseSigactEJB;

public class Ellipsoid {
 //
 public int m_id;
 public String m_ellipsoidName;
 public double m_EquatorialRadius;
 public double m_eccentricitySquared;

 //
 public Ellipsoid(int id, String ellipsoidName, double EquatorialRadius,
 double eccentricitySquared) {
 m_id = id;
 m_ellipsoidName = ellipsoidName;
 m_EquatorialRadius = EquatorialRadius;
 m_eccentricitySquared = eccentricitySquared;
 }

 157

 //
 static public Ellipsoid m_ElipseTable[] = {
 new Ellipsoid(0, "Placeholder", 0.0, 0.0),
 new Ellipsoid(1, "Airy", 6377563.0, 0.00667054),
 new Ellipsoid(2, "Australian National", 6378160.0, 0.006694542),
 new Ellipsoid(3, "Bessel 1841", 6377397.0, 0.006674372),
 new Ellipsoid(4, "Bessel 1841 (Nambia) ", 6377484.0, 0.006674372),
 new Ellipsoid(5, "Clarke 1866", 6378206.0, 0.006768658),
 new Ellipsoid(6, "Clarke 1880", 6378249.0, 0.006803511),
 new Ellipsoid(7, "Everest", 6377276.0, 0.006637847),
 new Ellipsoid(8, "Fischer 1960 (Mercury) ", 6378166.0, 0.006693422),
 new Ellipsoid(9, "Fischer 1968", 6378150.0, 0.006693422),
 new Ellipsoid(10, "GRS 1967", 6378160.0, 0.006694605),
 new Ellipsoid(11, "GRS 1980", 6378137.0, 0.00669438),
 new Ellipsoid(12, "Helmert 1906", 6378200.0, 0.006693422),
 new Ellipsoid(13, "Hough", 6378270.0, 0.00672267),
 new Ellipsoid(14, "International", 6378388.0, 0.00672267),
 new Ellipsoid(15, "Krassovsky", 6378245.0, 0.006693422),
 new Ellipsoid(16, "Modified Airy", 6377340.0, 0.00667054),
 new Ellipsoid(17, "Modified Everest", 6377304.0, 0.006637847),
 new Ellipsoid(18, "Modified Fischer 1960", 6378155.0, 0.006693422),
 new Ellipsoid(19, "South American 1969", 6378160.0, 0.006694542),
 new Ellipsoid(20, "WGS 60", 6378165.0, 0.006693422),
 new Ellipsoid(21, "WGS 66", 6378145.0, 0.006694542),
 new Ellipsoid(22, "WGS-72", 6378135.0, 0.006694318),
 new Ellipsoid(23, "WGS-84", 6378137.0, 0.00669438)
 };
};

package com.sun.BaseSigactEJB;

public class Location {

 public final static double DEF_DOUBLE = -32768.0;
 public static double DEFAULT_LAT = DEF_DOUBLE;
 public static double DEFAULT_LNG = DEF_DOUBLE;

 private String m_location;

 public Location() {
 m_location = "";
 }

 public Location(String str) {

 158

 m_location = str;
 }

 static public Position StringToPosition(String pos) {
 Location location = new Location(pos);
 Position position = new Position();
 if (location.getPosition(position)) {
 return (position);
 }
 return (null);
 }

 /**
 * Set the Location string. The Location of a track can be given in a
 * variety of formats including any of the following:
 *
 * Lat/Lng degrees (DDA DDDA)
 * Lat/Lng minutes (DDMMA DDDMMA,LM:DDMMADDDMMA)
 * Lat/Lng seconds (DDMMSSA DDDMMSSA,LS:DDMMSSADDDMMSSA)
 * Lat/Lng decimal seconds (DDMMSS.SA DDDMMSS.SA,DD:MM:SS.SA
DDD:MM:SS.SA)
 * Lat/Lng decimal hundredths (DDMMSS.SSA DDDMMSS.SSA,DD:MM:SS.SSA
DDD:MM:SS.SSA)
 *
 * Lat/Lng like:
 * LL:DDMMSSNc-SSSMMSSWc
 * LL:DDMMSS.SNc-SSSMMSS.SWc
 * LL:DDMMSS.SSNc-SSSMMSS.SSWc
 * LL:DDMMNc-SSSMMWc
 * LL:DDMM.MMMNc-SSSMM.MMMWc
 *
 * UT:31NAD1200015000 Zone=31, Lat Band=N, 100000 cell=A+D, Easting=12000,
Northing=15000
 * MGR
 * Georef (AAAANNNN)
 *
 * And if all else fails we try Lat,Lng in the form +12.12345 -123.20000 (i.e. two
doubles);
 *
 * @param str Location string.
 */
 public void setLocation(String str) {
 m_location = str;
 }

 159

 /**
 * Get the Location string.
 * @return Location string.
 */
 public String getLocation() {
 return (m_location);
 }

 public Position getPosition() {
 Position pos = new Position();
 if (getPosition(pos)) {
 return (pos);
 }
 return (null);
 }

 /**
 * Fill an object using its IxPosition interface
 * @param posit
 */
 public boolean getPosition(Position posit) {
 String latStr;
 String lngStr;
 if (patternMatch("####N#####W")) {
 latStr = m_location.substring(0, 5);
 lngStr = m_location.substring(5);
 posit.setLatLng(StringToLat(latStr), StringToLng(lngStr));
 return (true);
 }
 if (patternMatch("######N#######W")) {
 latStr = m_location.substring(0, 7);
 lngStr = m_location.substring(7);
 posit.setLatLng(StringToLat(latStr), StringToLng(lngStr));
 return (true);
 }
 if (patternMatch("LD:##N###W")) {
 latStr = m_location.substring(3, 6);
 lngStr = m_location.substring(6, 10);
 posit.setLatLng(StringToLat(latStr), StringToLng(lngStr));
 return (true);
 }
 if (patternMatch("LM:####N#####W")) {
 latStr = m_location.substring(3, 8);
 lngStr = m_location.substring(8, 14);
 posit.setLatLng(StringToLat(latStr), StringToLng(lngStr));

 160

 return (true);
 }
 if (patternMatch("LS:######N#######W")) {
 latStr = m_location.substring(3, 10);
 lngStr = m_location.substring(10, 18);
 posit.setLatLng(StringToLat(latStr), StringToLng(lngStr));
 return (true);
 }
 if (patternMatch("LS:######.#N#######.#W")) {
 latStr = m_location.substring(3, 12);
 lngStr = m_location.substring(12, 22);
 posit.setLatLng(StringToLat(latStr), StringToLng(lngStr));
 return (true);
 }
 if (patternMatch("LC:######.#N#######.#W")) {
 latStr = m_location.substring(3, 12);
 lngStr = m_location.substring(12, 22);
 posit.setLatLng(StringToLat(latStr), StringToLng(lngStr));
 return (true);
 }
 if (patternMatch("LL:####N#-#####W#")) {
 latStr = m_location.substring(3, 8);
 lngStr = m_location.substring(10, 16);
 posit.setLatLng(StringToLat(latStr), StringToLng(lngStr));
 return (true);
 }
 if (patternMatch("LL:####.###N#-#####.###W#")) {
 latStr = m_location.substring(3, 12);
 lngStr = m_location.substring(14, 24);
 posit.setLatLng(StringToLat(latStr), StringToLng(lngStr));
 return (true);
 }
 if (patternMatch("LL:######N#-#######W#")) {
 latStr = m_location.substring(3, 10);
 lngStr = m_location.substring(12, 20);
 posit.setLatLng(StringToLat(latStr), StringToLng(lngStr));
 return (true);
 }
 if (patternMatch("LL:######.#N#-#######.#W#")) {
 latStr = m_location.substring(3, 12);
 lngStr = m_location.substring(14, 24);
 posit.setLatLng(StringToLat(latStr), StringToLng(lngStr));
 return (true);
 }
 if (patternMatch("LL:######.##N#-#######.##W#")) {

 161

 latStr = m_location.substring(3, 13);
 lngStr = m_location.substring(15, 26);
 posit.setLatLng(StringToLat(latStr), StringToLng(lngStr));
 return (true);
 }
 // 1 & 10-Meter MGRS
 if (m_location.startsWith("UT:") || m_location.startsWith("UH:")) {
 UTM utm = new UTM();
 if (MGR.MRGtoUTM(m_location.substring(3), utm)) {
 return (UTM.UTMtoLL(utm, posit));
 }
 }
 // 1-1000 Meter MGRS
 if (isMGR()) {
 UTM utm = new UTM();
 if (MGR.MRGtoUTM(m_location, utm)) {
 return (UTM.UTMtoLL(utm, posit));
 }
 }
 //
 String parts[] = m_location.trim().split(" ");
 if (parts.length != 2) {
 parts = m_location.trim().split("-");
 if (parts.length != 2) {
 return (false);
 }
 }
 //
 latStr = parts[0];
 lngStr = parts[1];
 double lat = StringToLat(latStr);
 double lng = StringToLng(lngStr);
 if (lat == DEFAULT_LAT || lng == DEFAULT_LNG) {
 return (false);
 }
 posit.setLatLng(lat, lng);
 return (true);
 }

 public boolean isGEOREF() {

 if (m_location.length() != 8) {
 return (false);
 }
 int i;

 162

 for (i = 0; i < 4; i++) {
 if (StringOps.validAlpha.indexOf(m_location.substring(i, i + 1)) == -1) {
 return (false);
 }
 }
 for (i = 4; i < 8; i++) {
 if (StringOps.validDigit.indexOf(m_location.substring(i, i + 1)) == -1) {
 return (false);
 }
 }
 return (true);
 }

 public boolean isMGR() {
 if (patternMatch("##$$$##########")) {
 return (true);
 }
 if (patternMatch("##$$$########")) {
 return (true);
 }
 if (patternMatch("##$$$######")) {
 return (true);
 }
 if (patternMatch("##$$$####")) {
 return (true);
 }
 return (false);
 }

 public boolean isUTM() {
 return (patternMatch("## ###### ########"));
 }

 public boolean isLatLng() {
 if (patternMatch("##N ###W")) {
 return (true);
 }
 if (patternMatch("####N #####W")) {
 return (true);
 }
 if (patternMatch("####N#####W")) {
 return (true);
 }
 if (patternMatch("######N #######W")) {
 return (true);

 163

 }
 if (patternMatch("######N#######W")) {
 return (true);
 }
 if (patternMatch("######.#N #######.#W")) {
 return (true);
 }
 if (patternMatch("##:##N ###:##W")) {
 return (true);
 }
 if (patternMatch("##:##:##N ###:##:##W")) {
 return (true);
 }
 if (patternMatch("##:##:##.#N ###:##:##.#W")) {
 return (true);
 }
 if (patternMatch("LD:##N###W")) {
 return (true);
 }
 if (patternMatch("LM:####N#####W")) {
 return (true);
 }
 if (patternMatch("LS:######N#######W")) {
 return (true);
 }
 if (patternMatch("LS:######.#N#######.#W")) {
 return (true);
 }
 return (false);
 }

 public boolean patternMatch(String pattern) {
 return (StringOps.patternMatch(pattern, m_location));
 }

 public static double StringToLat(String str) {
 //
 int N = str.indexOf("N");
 int S = str.indexOf("S");
 //
 if (N == -1 && S == -1) {
 // Test for floating point between -90 and 90
 double lat = DEFAULT_LAT;
 try {
 lat = Double.parseDouble(str);

 164

 }
 catch (Exception e) {}
 if (lat > 90.0) {
 return (DEFAULT_LAT);
 }
 if (lat < -90.0) {
 return (DEFAULT_LAT);
 }
 return (lat);
 }
 int n = Math.max(N, S);
 str = str.substring(0, n + 1);
 //
 String sgnStr = "0";
 String degStr = "0";
 String minStr = "0";
 String secStr = "0";
 //
 if (StringOps.patternMatch("##N", str)) {
 degStr = str.substring(0, 2);
 minStr = "0";
 secStr = "0";
 sgnStr = str.substring(2, 3);
 }
 else if (StringOps.patternMatch("####N", str)) {
 degStr = str.substring(0, 2);
 minStr = str.substring(2, 4);
 secStr = "0";
 sgnStr = str.substring(4, 5);
 }
 else if (StringOps.patternMatch("####.###N", str)) {
 degStr = str.substring(0, 2);
 minStr = str.substring(2, 8);
 secStr = "0";
 sgnStr = str.substring(8, 9);
 }
 else if (StringOps.patternMatch("######N", str)) {
 degStr = str.substring(0, 2);
 minStr = str.substring(2, 4);
 secStr = str.substring(4, 6);
 sgnStr = str.substring(6, 7);
 }
 else if (StringOps.patternMatch("######.#N", str)) {
 degStr = str.substring(0, 2);
 minStr = str.substring(2, 4);

 165

 secStr = str.substring(4, 8);
 sgnStr = str.substring(8, 9);
 }
 else if (StringOps.patternMatch("######.##N", str)) {
 degStr = str.substring(0, 2);
 minStr = str.substring(2, 4);
 secStr = str.substring(4, 9);
 sgnStr = str.substring(9, 10);
 }
 else if (StringOps.patternMatch("##:##:##N", str)) {
 degStr = str.substring(0, 2);
 minStr = str.substring(3, 5);
 secStr = str.substring(6, 8);
 sgnStr = str.substring(8, 9);
 }
 else if (StringOps.patternMatch("##:##:##.#N", str)) {
 degStr = str.substring(0, 2);
 minStr = str.substring(3, 5);
 secStr = str.substring(6, 10);
 sgnStr = str.substring(10, 11);
 }
 else {
 return (DEF_DOUBLE);
 }

 Double deg = new Double(degStr);
 Double min = new Double(minStr);
 Double sec = new Double(secStr);
 if (sgnStr.equals("N")) {
 return ((deg.doubleValue() +
 (min.doubleValue() + sec.doubleValue() / 60) / 60));
 }
 else if (sgnStr.equals("S")) {
 return (- (deg.doubleValue() +
 (min.doubleValue() + sec.doubleValue() / 60) / 60));
 }
 else {
 return (DEFAULT_LAT);
 }
 }

 public static double StringToLng(String str) {
 //
 int E = str.indexOf("E");
 int W = str.indexOf("W");

 166

 //
 if (E == -1 && W == -1) {
 // Test for floating point between -180 and 180
 double lng = DEFAULT_LNG;
 try {
 lng = Double.parseDouble(str);
 }
 catch (Exception e) {
 return (DEFAULT_LNG);
 }
 if (lng > 180.0) {
 return (DEFAULT_LNG);
 }
 if (lng < -180.0) {
 return (DEFAULT_LNG);
 }
 return (lng);
 }
 int n = Math.max(E, W);
 str = str.substring(0, n + 1);

 String sgnStr = "0";
 String degStr = "0";
 String minStr = "0";
 String secStr = "0";

 if (StringOps.patternMatch("###W", str)) {
 degStr = str.substring(0, 3);
 minStr = "0";
 secStr = "0";
 sgnStr = str.substring(3, 4);
 }
 else if (StringOps.patternMatch("#####W", str)) {
 degStr = str.substring(0, 3);
 minStr = str.substring(3, 5);
 secStr = "0";
 sgnStr = str.substring(5, 6);
 }
 else if (StringOps.patternMatch("#####.###W", str)) {
 degStr = str.substring(0, 3);
 minStr = str.substring(3, 9);
 secStr = "0";
 sgnStr = str.substring(9, 10);
 }
 else if (StringOps.patternMatch("#######W", str)) {

 167

 degStr = str.substring(0, 3);
 minStr = str.substring(3, 5);
 secStr = str.substring(5, 7);
 sgnStr = str.substring(7, 8);
 }
 else if (StringOps.patternMatch("#######.#W", str)) {
 degStr = str.substring(0, 3);
 minStr = str.substring(3, 5);
 secStr = str.substring(5, 9);
 sgnStr = str.substring(9, 10);
 }
 else if (StringOps.patternMatch("#######.##W", str)) {
 degStr = str.substring(0, 3);
 minStr = str.substring(3, 5);
 secStr = str.substring(5, 10);
 sgnStr = str.substring(10, 11);
 }
 else if (StringOps.patternMatch("###:##:##W", str)) {
 degStr = str.substring(0, 3);
 minStr = str.substring(4, 6);
 secStr = str.substring(7, 9);
 sgnStr = str.substring(9, 10);
 }
 else if (StringOps.patternMatch("###:##:##.#W", str)) {
 degStr = str.substring(0, 3);
 minStr = str.substring(4, 6);
 secStr = str.substring(7, 11);
 sgnStr = str.substring(11, 12);
 }
 else {
 return (DEFAULT_LNG);
 }

 Double deg = new Double(degStr);
 Double min = new Double(minStr);
 Double sec = new Double(secStr);
 if (sgnStr.equals("E")) {
 return ((deg.doubleValue() +
 (min.doubleValue() + sec.doubleValue() / 60) / 60));
 }
 else if (sgnStr.equals("W")) {
 return (- (deg.doubleValue() +
 (min.doubleValue() + sec.doubleValue() / 60) / 60));
 }
 else {

 168

 return (DEFAULT_LNG);
 }
 }

 public boolean isValid() {
 return (true);
 }
}

package com.sun.BaseSigactEJB;

import java.util.Hashtable;
import java.text.DecimalFormat;

public class MGR {
 static Hashtable m_latitudeBandTable = new Hashtable();

 //
 class LatitudeBand {
 //
 String m_letter; /* letter representing latitude band */
 double m_minNorthing; /* minimum northing for latitude band */
 double m_north; /* upper latitude for latitude band */
 double m_south; /* lower latitude for latitude band */

 //
 public LatitudeBand(String letter, double minNorthing, double north,
 double south) {
 m_letter = letter;
 m_minNorthing = minNorthing;
 m_north = north;
 m_south = south;
 m_latitudeBandTable.put(m_letter, this);
 }
 };

 //
 static public LatitudeBand getBandByLetter(String letter) {
 return ((LatitudeBand) m_latitudeBandTable.get(letter));
 }

 //
 LatitudeBand LatitudeBandTable[] = {
 new LatitudeBand("C", 1100000.0, -72.0, -80.5),

 169

 new LatitudeBand("D", 2000000.0, -64.0, -72.0),
 new LatitudeBand("E", 2800000.0, -56.0, -64.0),
 new LatitudeBand("F", 3700000.0, -48.0, -56.0),
 new LatitudeBand("G", 4600000.0, -40.0, -48.0),
 new LatitudeBand("H", 5500000.0, -32.0, -40.0),
 new LatitudeBand("J", 6400000.0, -24.0, -32.0),
 new LatitudeBand("K", 7300000.0, -16.0, -24.0),
 new LatitudeBand("L", 8200000.0, -8.0, -16.0),
 new LatitudeBand("M", 9100000.0, 0.0, -8.0),
 new LatitudeBand("N", 0.0, 8.0, 0.0),
 new LatitudeBand("P", 800000.0, 16.0, 8.0),
 new LatitudeBand("Q", 1700000.0, 24.0, 16.0),
 new LatitudeBand("R", 2600000.0, 32.0, 24.0),
 new LatitudeBand("S", 3500000.0, 40.0, 32.0),
 new LatitudeBand("T", 4400000.0, 48.0, 40.0),
 new LatitudeBand("U", 5300000.0, 56.0, 48.0),
 new LatitudeBand("V", 6200000.0, 64.0, 56.0),
 new LatitudeBand("W", 7000000.0, 72.0, 64.0),
 new LatitudeBand("X", 7900000.0, 84.5, 72.0),
 };
 //
 static String m_northernRows = "NPQRSTUVWX";
 static String m_southernRows = "CDEFGHJKLM";
 static String m_rowLetters = "ABCDEFGHJKLMNPQRSTUV";

 //
 int m_zone;
 String m_row;
 String m_cellRow;
 String m_cellCol;
 int m_easting;
 int m_northing;
 int m_precision;

 //
 public MGR() {}

 //
 public String getHemisphere() {
 if (m_northernRows.indexOf(m_row) != -1) {
 return ("N");
 }
 if (m_southernRows.indexOf(m_row) != -1) {
 return ("S");
 }

 170

 return (null);
 }

 //
 public boolean setValue(String mgr) {
 if ((mgr.length() != 15) && (mgr.length() != 13) && (mgr.length() != 11) &&
 (mgr.length() != 9) && (mgr.length() != 7)) {
 return (false);
 }
 try {
 m_zone = Integer.parseInt(mgr.substring(0, 2));
 m_row = mgr.substring(2, 3);
 m_cellCol = mgr.substring(3, 4);
 m_cellRow = mgr.substring(4, 5);
 String eastAndNorth = mgr.substring(5);
 int n = eastAndNorth.length() / 2;
 String zeros = "";
 if (n < 5) {
 zeros = StringOps.padString(zeros, "0", 5 - n);
 }
 m_easting = Integer.parseInt(mgr.substring(5, 5 + n) + zeros);
 m_northing = Integer.parseInt(mgr.substring(5 + n, 5 + 2 * n) + zeros);
 m_precision = n;
 //
 // These three zones in row 'X' don't exist
 //
 if (m_row.equals("X") &&
 ((m_zone == 32) || (m_zone == 34) || (m_zone == 36))) {
 return (false);
 }

 return (true);
 }
 catch (Exception e) {
 return (false);
 }
 }

 //
 public static boolean MRGtoUTM(String val, UTM utm) {
 MGR mgr = new MGR();
 mgr.setValue(val);
 String hemisphere = mgr.getHemisphere();
 String start = "A";
 String end = "H";

 171

 String sequence = "ABCDEFGH";
 long falseNorthing = 0;
 switch (mgr.m_zone % 6) {
 case 1:
 start = "A";
 end = "H";
 sequence = "ABCDEFGH";
 falseNorthing = 0;
 break;
 case 2:
 start = "J";
 end = "R";
 sequence = "JKLMNPQR";
 falseNorthing = 1500000;
 break;
 case 3:
 start = "S";
 end = "Z";
 sequence = "STUVWXYZ";
 falseNorthing = 0;
 break;
 case 4:
 start = "A";
 end = "H";
 sequence = "ABCDEFGH";
 falseNorthing = 1500000;
 break;
 case 5:
 start = "J";
 end = "R";
 sequence = "JKLMNPQR";
 falseNorthing = 0;
 break;
 case 0:
 start = "S";
 end = "Z";
 sequence = "STUVWXYZ";
 falseNorthing = 1500000;
 break;
 }
 if (mgr.m_cellCol.compareTo(start) < 0) {
 return (false);
 }
 if (mgr.m_cellCol.compareTo(end) > 0) {
 return (false);

 172

 }
 if (mgr.m_cellRow.compareTo("V") > 0) {
 return (false);
 }

 int m = m_rowLetters.indexOf(mgr.m_cellRow);
 int n = sequence.indexOf(mgr.m_cellCol);

 double gridNorthing = 100000.0 * m + falseNorthing;
 double gridEasting = 100000.0 * (n + 1);
 //
 if (gridNorthing >= 2000000.0) {
 gridNorthing = gridNorthing - 2000000.0;
 }
 LatitudeBand band = getBandByLetter(mgr.m_row);
 double scaledMinNorthing = band.m_minNorthing;
 while (scaledMinNorthing >= 2000000.0) {
 scaledMinNorthing = scaledMinNorthing - 2000000.0;
 }
 gridNorthing = gridNorthing - scaledMinNorthing;
 if (gridNorthing < 0.0) {
 gridNorthing = gridNorthing + 2000000.0;
 }
 gridNorthing = band.m_minNorthing + gridNorthing;
 utm.m_easting = gridEasting + mgr.m_easting;
 utm.m_northing = gridNorthing + mgr.m_northing;
 DecimalFormat form = new DecimalFormat("00");
 utm.m_utmZone = form.format(mgr.m_zone) + mgr.m_row;
 //
 return (true);
 }

 public static void main(String[] args) {
 UTM utm = new UTM();
 String sequence = "ABCDEFGH";
 String rowLetters = "ABCDEFGHJKLMNPQRSTUV";
 System.out.println("--");
 for (int j = 0; j < rowLetters.length(); j++) {
 for (int i = 0; i < sequence.length(); i++) {
 String mgr = "01N" + sequence.substring(i, i + 1) +
 rowLetters.substring(j, j + 1) + "1200015000";
 MRGtoUTM(mgr, utm);
 System.out.println("MRG=" + mgr);
 System.out.println("UTM=" + utm);
 Position p = utm.toPosition();

 173

 System.out.println(" LL=" + p);
 System.out.println("--");
 }
 }
 }
}

package com.sun.BaseSigactEJB;

import java.text.*;
import java.util.*;

public class Position {

 static private DecimalFormat form1 = new DecimalFormat("000");
 static private DecimalFormat form2 = new DecimalFormat("00");
 static private DecimalFormat form3 = new DecimalFormat("00.0");

 private double m_lat;
 private double m_lng;

 public Position() {
 m_lat = 0;
 m_lng = 0;
 }

 public Position(double lat, double lng) {
 m_lat = lat;
 m_lng = lng;
 }

 /**
 * Set the Latitude and Longitude of a position. These valuse are in the
 * range -90 to 90 degrees and -180 to 180 degress, respectively.
 * @param lat Latitude between -90 and 90 degrees.
 * @param lng Longitude between -180 and 180 degrees.
 */
 public void setLatLng(double lat, double lng) {
 m_lat = lat;
 m_lng = lng;
 }

 /**
 * Get the Latitude of the position.
 * @return Latitude double.

 174

 */
 public double getLat() {
 return (m_lat);
 }

 /**
 * Get the Longitude of the position.
 * @return Longitude double.
 */
 public double getLng() {
 return (m_lng);
 }

 public String toString() {
 return (getString("DD:MM:SS.SN DDD:MM:SS.SW"));
 }

 public String getString(String format) {
 String latString;
 String lngString;
 if (StringOps.patternMatch("DDMMN DDDMMW", format)) {
 {
 double lat = m_lat;
 double sgn = 1.0;
 if (lat < 0.0) {
 sgn = -1;
 lat = -lat;
 }
 int totalMinutes = (int) (60 * lat + .5);
 int totalDegrees = totalMinutes / 60;
 int minutes = totalMinutes - 60 * totalDegrees;
 String deg = form2.format(totalDegrees);
 String min = form2.format(minutes);
 if (sgn == 1.0) {
 latString = deg + min + "N";
 }
 else {
 latString = deg + min + "S";
 }
 }
 {
 double lng = m_lng;
 double sgn = 1.0;
 if (lng < 0.0) {
 sgn = -1;

 175

 lng = -lng;
 }
 int totalMinutes = (int) (60 * lng + .5);
 int totalDegrees = totalMinutes / 60;
 int minutes = totalMinutes - 60 * totalDegrees;
 String deg = form1.format(totalDegrees);
 String min = form2.format(minutes);
 if (sgn == 1.0) {
 lngString = deg + min + "E";
 }
 else {
 lngString = deg + min + "W";
 }
 }
 return (latString + " " + lngString);
 }
 if (StringOps.patternMatch("DDMMSSN DDDMMSSW", format)) {
 {
 double lat = m_lat;
 double sgn = 1.0;
 if (lat < 0.0) {
 sgn = -1;
 lat = -lat;
 }
 int totalSeconds = (int) (3600 * lat + .5);
 int totalMinutes = totalSeconds / 60;
 int seconds = totalSeconds - 60 * totalMinutes;
 int totalDegrees = totalMinutes / 60;
 int minutes = totalMinutes - 60 * totalDegrees;
 String deg = form2.format(totalDegrees);
 String min = form2.format(minutes);
 String sec = form2.format(seconds);
 if (sgn == 1.0) {
 latString = deg + min + sec + "N";
 }
 else {
 latString = deg + min + sec + "S";
 }
 }
 {
 double lng = m_lng;
 double sgn = 1.0;
 if (lng < 0.0) {
 sgn = -1;
 lng = -lng;

 176

 }
 int totalSeconds = (int) (3600 * lng + .5);
 int totalMinutes = totalSeconds / 60;
 int seconds = totalSeconds - 60 * totalMinutes;
 int totalDegrees = totalMinutes / 60;
 int minutes = totalMinutes - 60 * totalDegrees;
 String deg = form1.format(totalDegrees);
 String min = form2.format(minutes);
 String sec = form2.format(seconds);
 if (sgn == 1.0) {
 lngString = deg + min + sec + "E";
 }
 else {
 lngString = deg + min + sec + "W";
 }
 }
 return (latString + " " + lngString);
 }
 if (StringOps.patternMatch("DD:MM:SSN DDD:MM:SSW", format)) {
 {
 double lat = m_lat;
 double sgn = 1.0;
 if (lat < 0.0) {
 sgn = -1;
 lat = -lat;
 }
 int totalSeconds = (int) (3600 * lat + .5);
 int totalMinutes = totalSeconds / 60;
 int seconds = totalSeconds - 60 * totalMinutes;
 int totalDegrees = totalMinutes / 60;
 int minutes = totalMinutes - 60 * totalDegrees;
 String deg = form2.format(totalDegrees);
 String min = form2.format(minutes);
 String sec = form2.format(seconds);
 if (sgn == 1.0) {
 latString = deg + ":" + min + ":" + sec + "N";
 }
 else {
 latString = deg + ":" + min + ":" + sec + "S";
 }
 }
 {
 double lng = m_lng;
 double sgn = 1.0;
 if (lng < 0.0) {

 177

 sgn = -1;
 lng = -lng;
 }
 int totalSeconds = (int) (3600 * lng + .5);
 int totalMinutes = totalSeconds / 60;
 int seconds = totalSeconds - 60 * totalMinutes;
 int totalDegrees = totalMinutes / 60;
 int minutes = totalMinutes - 60 * totalDegrees;
 String deg = form1.format(totalDegrees);
 String min = form2.format(minutes);
 String sec = form2.format(seconds);
 if (sgn == 1.0) {
 lngString = deg + ":" + min + ":" + sec + "E";
 }
 else {
 lngString = deg + ":" + min + ":" + sec + "W";
 }
 }
 return (latString + " " + lngString);
 }
 if (StringOps.patternMatch("DDMMSS.SN DDDMMSS.SW", format)) {
 {
 double lat = m_lat;
 double sgn = 1.0;
 if (lat < 0.0) {
 sgn = -1;
 lat = -lat;
 }
 int totalTenthsOfSeconds = (int) Math.round(36000.0 * lat);
 int tenths = totalTenthsOfSeconds % 10;
 int totalSeconds = totalTenthsOfSeconds / 10;
 int totalMinutes = totalSeconds / 60;
 int seconds = totalSeconds - 60 * totalMinutes;
 int totalDegrees = totalMinutes / 60;
 int minutes = totalMinutes - 60 * totalDegrees;
 String deg = form2.format(totalDegrees);
 String min = form2.format(minutes);
 String sec = form3.format(seconds + (double) tenths / 10.0);
 if (sgn == 1.0) {
 latString = deg + min + sec + "N";
 }
 else {
 latString = deg + min + sec + "S";
 }
 }

 178

 {
 double lng = m_lng;
 double sgn = 1.0;
 if (lng < 0.0) {
 sgn = -1;
 lng = -lng;
 }
 int totalTenthsOfSeconds = (int) Math.round(36000.0 * lng);
 int tenths = totalTenthsOfSeconds % 10;
 int totalSeconds = totalTenthsOfSeconds / 10;
 int totalMinutes = totalSeconds / 60;
 int seconds = totalSeconds - 60 * totalMinutes;
 int totalDegrees = totalMinutes / 60;
 int minutes = totalMinutes - 60 * totalDegrees;
 String deg = form1.format(totalDegrees);
 String min = form2.format(minutes);
 String sec = form3.format(seconds + (double) tenths / 10.0);
 if (sgn == 1.0) {
 lngString = deg + min + sec + "E";
 }
 else {
 lngString = deg + min + sec + "W";
 }
 }
 return (latString + " " + lngString);
 }
 if (StringOps.patternMatch("DD:MM:SS.SN DDD:MM:SS.SW", format)) {
 {
 double lat = m_lat;
 double sgn = 1.0;
 if (lat < 0.0) {
 sgn = -1;
 lat = -lat;
 }
 int totalTenthsOfSeconds = (int) Math.round(36000.0 * lat);
 int tenths = totalTenthsOfSeconds % 10;
 int totalSeconds = totalTenthsOfSeconds / 10;
 int totalMinutes = totalSeconds / 60;
 int seconds = totalSeconds - 60 * totalMinutes;
 int totalDegrees = totalMinutes / 60;
 int minutes = totalMinutes - 60 * totalDegrees;
 String deg = form2.format(totalDegrees);
 String min = form2.format(minutes);
 String sec = form3.format(seconds + (double) tenths / 10.0);
 if (sgn == 1.0) {

 179

 latString = deg + ":" + min + ":" + sec + "N";
 }
 else {
 latString = deg + ":" + min + ":" + sec + "S";
 }
 }
 {
 double lng = m_lng;
 double sgn = 1.0;
 if (lng < 0.0) {
 sgn = -1;
 lng = -lng;
 }
 int totalTenthsOfSeconds = (int) Math.round(36000.0 * lng);
 int tenths = totalTenthsOfSeconds % 10;
 int totalSeconds = totalTenthsOfSeconds / 10;
 int totalMinutes = totalSeconds / 60;
 int seconds = totalSeconds - 60 * totalMinutes;
 int totalDegrees = totalMinutes / 60;
 int minutes = totalMinutes - 60 * totalDegrees;
 String deg = form1.format(totalDegrees);
 String min = form2.format(minutes);
 String sec = form3.format(seconds + (double) tenths / 10.0);
 if (sgn == 1.0) {
 lngString = deg + ":" + min + ":" + sec + "E";
 }
 else {
 lngString = deg + ":" + min + ":" + sec + "W";
 }
 }
 return (latString + " " + lngString);
 }
 return ("");
 }

 static public String getLatString(double lat, String format) {
 String latString;
 if (StringOps.patternMatch("DDMMSS.SN", format)) {
 {
 double sgn = 1.0;
 if (lat < 0.0) {
 sgn = -1;
 lat = -lat;
 }
 int totalTenthsOfSeconds = (int) Math.round(36000.0 * lat);

 180

 int tenths = totalTenthsOfSeconds % 10;
 int totalSeconds = totalTenthsOfSeconds / 10;
 int totalMinutes = totalSeconds / 60;
 int seconds = totalSeconds - 60 * totalMinutes;
 int totalDegrees = totalMinutes / 60;
 int minutes = totalMinutes - 60 * totalDegrees;
 String deg = form2.format(totalDegrees);
 String min = form2.format(minutes);
 String sec = form3.format(seconds + (double) tenths / 10.0);
 if (sgn == 1.0) {
 latString = deg + min + sec + "N";
 }
 else {
 latString = deg + min + sec + "S";
 }
 }
 return (latString);
 }
 if (StringOps.patternMatch("DDMMSSN", format)) {
 {
 double sgn = 1.0;
 if (lat < 0.0) {
 sgn = -1;
 lat = -lat;
 }
 int totalSeconds = (int) (3600 * lat + .5);
 int totalMinutes = totalSeconds / 60;
 int seconds = totalSeconds - 60 * totalMinutes;
 int totalDegrees = totalMinutes / 60;
 int minutes = totalMinutes - 60 * totalDegrees;
 String deg = form2.format(totalDegrees);
 String min = form2.format(minutes);
 String sec = form2.format(seconds);
 if (sgn == 1.0) {
 latString = deg + min + sec + "N";
 }
 else {
 latString = deg + min + sec + "S";
 }
 }
 return (latString);
 }
 if (StringOps.patternMatch("DDMMN", format)) {
 {
 double sgn = 1.0;

 181

 if (lat < 0.0) {
 sgn = -1;
 lat = -lat;
 }
 int totalMinutes = (int) (60 * lat + .5);
 int totalDegrees = totalMinutes / 60;
 int minutes = totalMinutes - 60 * totalDegrees;
 String deg = form2.format(totalDegrees);
 String min = form2.format(minutes);
 if (sgn == 1.0) {
 latString = deg + min + "N";
 }
 else {
 latString = deg + min + "S";
 }
 }
 return (latString);
 }
 if (StringOps.patternMatch("DD:MM:SS.SN", format)) {
 {
 double sgn = 1.0;
 if (lat < 0.0) {
 sgn = -1;
 lat = -lat;
 }
 int totalTenthsOfSeconds = (int) Math.round(36000.0 * lat);
 int tenths = totalTenthsOfSeconds % 10;
 int totalSeconds = totalTenthsOfSeconds / 10;
 int totalMinutes = totalSeconds / 60;
 int seconds = totalSeconds - 60 * totalMinutes;
 int totalDegrees = totalMinutes / 60;
 int minutes = totalMinutes - 60 * totalDegrees;
 String deg = form2.format(totalDegrees);
 String min = form2.format(minutes);
 String sec = form3.format(seconds + (double) tenths / 10.0);
 if (sgn == 1.0) {
 latString = deg + ":" + min + ":" + sec + "N";
 }
 else {
 latString = deg + ":" + min + ":" + sec + "S";
 }
 }
 return (latString);
 }
 if (StringOps.patternMatch("DD:MM:SSN", format)) {

 182

 {
 double sgn = 1.0;
 if (lat < 0.0) {
 sgn = -1;
 lat = -lat;
 }
 int totalSeconds = (int) (3600 * lat + .5);
 int totalMinutes = totalSeconds / 60;
 int seconds = totalSeconds - 60 * totalMinutes;
 int totalDegrees = totalMinutes / 60;
 int minutes = totalMinutes - 60 * totalDegrees;
 String deg = form2.format(totalDegrees);
 String min = form2.format(minutes);
 String sec = form2.format(seconds);
 if (sgn == 1.0) {
 latString = deg + ":" + min + ":" + sec + "N";
 }
 else {
 latString = deg + ":" + min + ":" + sec + "S";
 }
 }
 return (latString);
 }
 return ("");
 }

 static public String getLngString(double lng, String format) {
 String lngString;
 if (StringOps.patternMatch("DDDMMSS.SW", format)) {
 {
 double sgn = 1.0;
 if (lng < 0.0) {
 sgn = -1;
 lng = -lng;
 }
 int totalTenthsOfSeconds = (int) Math.round(36000.0 * lng);
 int tenths = totalTenthsOfSeconds % 10;
 int totalSeconds = totalTenthsOfSeconds / 10;
 int totalMinutes = totalSeconds / 60;
 int seconds = totalSeconds - 60 * totalMinutes;
 int totalDegrees = totalMinutes / 60;
 int minutes = totalMinutes - 60 * totalDegrees;
 String deg = form1.format(totalDegrees);
 String min = form2.format(minutes);
 String sec = form3.format(seconds + (double) tenths / 10.0);

 183

 if (sgn == 1.0) {
 lngString = deg + min + sec + "E";
 }
 else {
 lngString = deg + min + sec + "W";
 }
 }
 return (lngString);
 }
 if (StringOps.patternMatch("DDDMMSSW", format)) {
 {
 double sgn = 1.0;
 if (lng < 0.0) {
 sgn = -1;
 lng = -lng;
 }
 int totalSeconds = (int) (3600 * lng + .5);
 int totalMinutes = totalSeconds / 60;
 int seconds = totalSeconds - 60 * totalMinutes;
 int totalDegrees = totalMinutes / 60;
 int minutes = totalMinutes - 60 * totalDegrees;
 String deg = form1.format(totalDegrees);
 String min = form2.format(minutes);
 String sec = form2.format(seconds);
 if (sgn == 1.0) {
 lngString = deg + min + sec + "E";
 }
 else {
 lngString = deg + min + sec + "W";
 }
 }
 return (lngString);
 }
 if (StringOps.patternMatch("DDDMMW", format)) {
 {
 double sgn = 1.0;
 if (lng < 0.0) {
 sgn = -1;
 lng = -lng;
 }
 int totalMinutes = (int) (60 * lng + .5);
 int totalDegrees = totalMinutes / 60;
 int minutes = totalMinutes - 60 * totalDegrees;
 String deg = form1.format(totalDegrees);
 String min = form2.format(minutes);

 184

 if (sgn == 1.0) {
 lngString = deg + min + "E";
 }
 else {
 lngString = deg + min + "W";
 }
 }
 return (lngString);
 }
 if (StringOps.patternMatch("DDD:MM:SS.SW", format)) {
 {
 double sgn = 1.0;
 if (lng < 0.0) {
 sgn = -1;
 lng = -lng;
 }
 int totalTenthsOfSeconds = (int) Math.round(36000.0 * lng);
 int tenths = totalTenthsOfSeconds % 10;
 int totalSeconds = totalTenthsOfSeconds / 10;
 int totalMinutes = totalSeconds / 60;
 int seconds = totalSeconds - 60 * totalMinutes;
 int totalDegrees = totalMinutes / 60;
 int minutes = totalMinutes - 60 * totalDegrees;
 String deg = form1.format(totalDegrees);
 String min = form2.format(minutes);
 String sec = form3.format(seconds + (double) tenths / 10.0);
 if (sgn == 1.0) {
 lngString = deg + ":" + min + ":" + sec + "E";
 }
 else {
 lngString = deg + ":" + min + ":" + sec + "W";
 }
 }
 return (lngString);
 }
 if (StringOps.patternMatch("DDD:MM:SSW", format)) {
 {
 double sgn = 1.0;
 if (lng < 0.0) {
 sgn = -1;
 lng = -lng;
 }
 int totalSeconds = (int) (3600 * lng + .5);
 int totalMinutes = totalSeconds / 60;
 int seconds = totalSeconds - 60 * totalMinutes;

 185

 int totalDegrees = totalMinutes / 60;
 int minutes = totalMinutes - 60 * totalDegrees;
 String deg = form1.format(totalDegrees);
 String min = form2.format(minutes);
 String sec = form2.format(seconds);
 if (sgn == 1.0) {
 lngString = deg + ":" + min + ":" + sec + "E";
 }
 else {
 lngString = deg + ":" + min + ":" + sec + "W";
 }
 }
 return (lngString);
 }

 return ("");
 }

 public static Random m_random;
 static {
 m_random = new Random(System.currentTimeMillis());
 }

 static public Position getRandomPosition(double lat, double lng,
 double radius) {
 lat += radius * (m_random.nextDouble() - 0.5);
 lng += radius * (m_random.nextDouble() - 0.5);
 return (new Position(lat, lng));
 }

 public static Position StringToPosition(String pos) {
 Location location = new Location(pos);
 Position position = new Position();
 if (location.getPosition(position)) {
 return (position);
 }
 return (null);
 }

 public static void main(String[] args) {
 //m_lng: double = -134.87933333333334
 {
 Position p = Location.StringToPosition("422200.0S 1345245.6W");
 p.m_lng = -134.87933333333334;
 System.out.println(p.getString("DDMMSS.SN DDDMMSS.SW"));

 186

 p.m_lng = -134.8793333333333;
 System.out.println(p.getString("DDMMSS.SN DDDMMSS.SW"));
 }
 {
 Position p = Location.StringToPosition("UT:01NCD1200015000");
 System.out.println(p.getString("DDMMSS.SN DDDMMSS.SW"));
 }
 }

}

package com.sun.BaseSigactEJB;

import java.io.*;

public class StringOps {

 static double DegreesToRadians = Math.PI / 180.0;

 static public final String validDigit = "0123456789";
 static public final String validAlpha = "ABCDEFGHJKLMNPQRSTUVWXYZ";

// static public final String validChars =
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ.-
#*%,;:&@`'[]\\^,:$=!<>()+?\"{}~_|";
 static public final String validChars =
 "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ.- #*%,;:";

 static public boolean isValidOTH(String str) {
 for (int i = 0; i < str.length(); i++) {
 String s = str.substring(i, i + 1);
 if (validChars.indexOf(s) == -1) {
 return (false);
 }
 }
 return (true);
 }

 //
 //
===
======

 187

 //
===
======
 //
 static public boolean isValidOctal(String val, int nchar) {
 if (val.length() > nchar) {
 return (false);
 }
 try {
 int n = Integer.parseInt(val, 8);
 return (true);
 }
 catch (Exception e) {
 return (false);
 }
 }

 //
 //
===
======
 //
===
======
 //
 static public String toValidOTH(String str, int maxChar) {
 String result = "";
 str = str.toUpperCase().trim();
 for (int i = 0; i < str.length(); i++) {
 String s = str.substring(i, i + 1);
 if (validChars.indexOf(s) == -1) {
 if (!result.endsWith(" ")) {
 result += " ";
 }
 }
 else {
 if (! (result.endsWith(" ") && s.equals(" "))) {
 result += s;
 }
 }
 }
 // Remove all double spaces
 str = result;
 result = "";
 for (int i = 0; i < str.length(); i++) {

 188

 String s = str.substring(i, i + 1);
 if (result.endsWith(" ") && s.equals(" ")) {
 continue;
 }
 result += s;
 }
 if (result.length() > maxChar) {
 result = result.substring(0, maxChar);
 }
 return (result.trim());
 }

 static public boolean patternMatch(String pattern, String target) {
 int n = pattern.length();
 int m = target.length();
 if (m < n) {
 return (false);
 }

 for (int i = 0; i < n; i++) {
 String p = pattern.substring(i, i + 1);
 String q = target.substring(i, i + 1);
 if (p.equals("*")) {
 continue;
 }
 else if (p.equals("A")) {
 if (validAlpha.indexOf(q) == -1) {
 return (false);
 }
 }
 else if (p.equals("#")) {
 if (validDigit.indexOf(q) == -1) {
 return (false);
 }
 }
 else if (p.equals("N") || p.equals("S")) {
 if (!q.equals("N") && !q.equals("S")) {
 return (false);
 }
 }
 else if (p.equals("E") || p.equals("W")) {
 if (!q.equals("E") && !q.equals("W")) {
 return (false);
 }
 }

 189

 else {
 if (!p.equals(q)) {
 return (false);
 }
 }
 }
 return (true);
 }

 static public void writeString(java.io.ObjectOutput out, String str) throws
 IOException {
 out.write(str.length());
 out.writeBytes(str);
 }

 static public String readString(java.io.ObjectInput in) throws IOException,
 ClassNotFoundException {
 int length = in.read();
 byte data[] = new byte[length];
 in.read(data);
 return (new String(data));
 }

 static public String padString(String in, int nchars) {
 String str = in;
 while (nchars > str.length()) {
 str = str + " ";
 }
 return (str.substring(0, nchars));
 }

 static public String padString(String in, String pattern, int nchars) {
 String str = in;
 while (nchars > str.length()) {
 str = str + pattern;
 }
 return (str.substring(0, nchars));
 }

 static public String truncate(String in, int nchars) {
 if (in.length() <= nchars) {
 return (in);
 }
 return (in.substring(0, nchars));
 }

 190

 static public int findArg(int start, String args[], String name) {
 for (int i = start; i < args.length; i++) {
 if (args[i].equalsIgnoreCase(name)) {
 return (i);
 }
 }
 return (-1);
 }

 //
 //
===
======
 //
===
======
 //
 static public boolean isValidLetterString(String str) {
 for (int i = 0; i < str.length(); i++) {
 if (!Character.isLetter(str.charAt(i))) {
 return (false);
 }
 }
 return (true);
 }

 //
 //
===
======
 //
===
======
 //
 static public boolean isValidLetterOrDigitString(String str) {
 for (int i = 0; i < str.length(); i++) {
 if (!Character.isLetterOrDigit(str.charAt(i))) {
 return (false);
 }
 }
 return (true);
 }

 //

 191

 //
===
======
 //
===
======
 //
 static public boolean isValidDigitString(String str) {
 for (int i = 0; i < str.length(); i++) {
 if (!Character.isDigit(str.charAt(i))) {
 return (false);
 }
 }
 return (true);
 }

 //
 //
===
======
 //
===
======
 //
 public static String concat(String strings[], String delim) {
 if (strings.length == 0) {
 return ("");
 }
 String result = strings[0];
 for (int i = 1; i < strings.length; i++) {
 result += (delim + strings[i]);
 }
 return (result);
 }

 //
 //
===
======
 //
===
======
 //
 public static String concat(String strings[]) {
 return (concat(strings, ","));

 192

 }

 //
 //
===
======
 //
===
======
 //
 public static String concat(String one, String two) {
 if (one == null) {
 return (two);
 }
 return (one + "," + two);
 }

 //
 //
===
======
 //
===
======
 //
 public static String concat(String one, String two, String delim) {
 if (one == null) {
 return (two);
 }
 return (one + delim + two);
 }

 //
 //
===
======
 //
===
======
 //
 static public String convertToValidName(String instanceID) {
 instanceID = instanceID.replaceAll("\\.", "_");
 instanceID = instanceID.replaceAll("-", "_");
 return (instanceID.toUpperCase());
 }

 193

 //
 //
===
=========
 //
===
=========
 //
 static public String instanceIDtoDomain(String instanceID) {
 String parts[] = instanceID.split("\\.");
 return (parts[0]);
 }

 //
 //
===
======
 //
===
======
 //
 public static void main(String[] args) {
 String result = StringOps.toValidOTH("CLASS NAME", 11);
 System.out.println(result);
 }
}
package com.sun.BaseSigactEJB;

import java.text.*;

public class UTM {
 //
 static final double PI = 3.14159265;
 static final double FOURTHPI = PI / 4.0;
 static final double deg2rad = PI / 180.0;
 static final double rad2deg = 180.0 / PI;

 //
 public double m_northing = 0;
 public double m_easting = 0;
 public String m_utmZone = "31N";

 194

 //
 public UTM() {}

 //
 public String toString() {
 DecimalFormat format = new DecimalFormat("00000000.000");
 String result = m_utmZone;
 result = result + " " + format.format(m_northing);
 result = result + " " + format.format(m_easting);
 return (result);
 }

 //
 static public boolean LLtoUTM(int ReferenceEllipsoid, double Lat, double Long,
 UTM utm) {
 //
 // converts lat/long to UTM coords. Equations from USGS Bulletin 1532
 // Written by Chuck Gantz- chuck.gantz@globalstar.com
 //
 char zone = UTMLetterDesignator(Lat);
 if (zone == 'Z') {
 return (false);
 }
 if (ReferenceEllipsoid == 0 ||
 ReferenceEllipsoid >= Ellipsoid.m_ElipseTable.length) {
 return (false);
 }
 //
 double a = Ellipsoid.m_ElipseTable[ReferenceEllipsoid].m_EquatorialRadius;
 double eccSquared = Ellipsoid.m_ElipseTable[ReferenceEllipsoid].
 m_eccentricitySquared;
 double k0 = 0.9996;
 double LongOrigin;
 double eccPrimeSquared;
 double N, T, C, A, M;
 //Make sure the longitude is between -180.00 .. 179.9
 while (Long < -180.0) {
 Long += 360.0;
 }
 while (Long >= 180.0) {
 Long -= 360.0;
 //
 }
 double LatRad = Lat * deg2rad;
 double LongRad = Long * deg2rad;

 195

 double LongOriginRad;
 int ZoneNumber;

 ZoneNumber = (int) ((Long + 180.0) / 6.0) + 1;

 if (Lat >= 56.0 && Lat < 64.0 && Long >= 3.0 && Long < 12.0) {
 ZoneNumber = 32;

 // Special zones for Svalbard
 }
 if (Lat >= 72.0 && Lat < 84.0) {
 if (Long >= 0.0 && Long < 9.0) {
 ZoneNumber = 31;
 }
 else if (Long >= 9.0 && Long < 21.0) {
 ZoneNumber = 33;
 }
 else if (Long >= 21.0 && Long < 33.0) {
 ZoneNumber = 35;
 }
 else if (Long >= 33.0 && Long < 42.0) {
 ZoneNumber = 37;
 }
 }
 LongOrigin = (ZoneNumber - 1.0) * 6.0 - 180.0 + 3.0; // +3 puts origin in middle of
zone
 LongOriginRad = LongOrigin * deg2rad;

 // compute the UTM Zone from the latitude and longitude
 utm.m_utmZone = "" + ZoneNumber + zone;

 eccPrimeSquared = (eccSquared) / (1 - eccSquared);
 double sinLat = Math.sin(LatRad);
 double sin2Lat = Math.sin(2 * LatRad);
 double sin4Lat = Math.sin(4 * LatRad);
 double sin6Lat = Math.sin(6 * LatRad);
 double cosLat = Math.cos(LatRad);
 double tanLat = Math.tan(LatRad);
 N = a / Math.sqrt(1 - eccSquared * sinLat * sinLat);
 T = tanLat * tanLat;
 C = eccPrimeSquared * cosLat * cosLat;
 A = cosLat * (LongRad - LongOriginRad);

 double E2 = eccSquared * eccSquared;
 double E3 = eccSquared * E2;

 196

 M = a *
 ((1.0 - eccSquared / 4.0 - 3.0 * E2 / 64.0 - 5.0 * E3 / 256.0) * LatRad
 -
 (3.0 * eccSquared / 8.0 + 3.0 * E2 / 32.0 + 45.0 * E3 / 1024.0) * sin2Lat
 + (15.0 * E2 / 256.0 + 45.0 * E3 / 1024.0) * sin4Lat
 - (35.0 * E3 / 3072.0) * sin6Lat);
 //
 double A2 = A * A;
 double A3 = A * A2;
 double T2 = T * T;
 utm.m_easting = (k0 * N *
 (A + (1.0 - T + C) * A3 / 6.0 +
 (5.0 - 18 * T + T2 + 72 * C - 58 * eccPrimeSquared) * A2 *
 A3 / 120.0) + 500000.0);
 utm.m_northing = (k0 *
 (M +
 N * tanLat *
 (A2 / 2 + (5 - T + 9 * C + 4 * C * C) * A2 * A2 / 24.0 +
 (61.0 - 58.0 * T + T2 + 600 * C -
 330.0 * eccPrimeSquared) * A3 * A3 / 720.0)));
 if (Lat < 0) {
 utm.m_northing += 10000000.0; //10000000 meter offset for southern hemisphere
 }
 return (true);
 }

 static char UTMLetterDesignator(double Lat) {
 //
 // This routine determines the correct UTM letter designator for the given latitude
 // returns 'Z' if latitude is outside the UTM limits of 84N to 80S
 // Written by Chuck Gantz- chuck.gantz@globalstar.com
 //
 char LetterDesignator;
 //
 if ((84 >= Lat) && (Lat >= 72)) {
 LetterDesignator = 'X';
 }
 else if ((72 > Lat) && (Lat >= 64)) {
 LetterDesignator = 'W';
 }
 else if ((64 > Lat) && (Lat >= 56)) {
 LetterDesignator = 'V';
 }
 else if ((56 > Lat) && (Lat >= 48)) {
 LetterDesignator = 'U';

 197

 }
 else if ((48 > Lat) && (Lat >= 40)) {
 LetterDesignator = 'T';
 }
 else if ((40 > Lat) && (Lat >= 32)) {
 LetterDesignator = 'S';
 }
 else if ((32 > Lat) && (Lat >= 24)) {
 LetterDesignator = 'R';
 }
 else if ((24 > Lat) && (Lat >= 16)) {
 LetterDesignator = 'Q';
 }
 else if ((16 > Lat) && (Lat >= 8)) {
 LetterDesignator = 'P';
 }
 else if ((8 > Lat) && (Lat >= 0)) {
 LetterDesignator = 'N';
 }
 else if ((0 > Lat) && (Lat >= -8)) {
 LetterDesignator = 'M';
 }
 else if ((-8 > Lat) && (Lat >= -16)) {
 LetterDesignator = 'L';
 }
 else if ((-16 > Lat) && (Lat >= -24)) {
 LetterDesignator = 'K';
 }
 else if ((-24 > Lat) && (Lat >= -32)) {
 LetterDesignator = 'J';
 }
 else if ((-32 > Lat) && (Lat >= -40)) {
 LetterDesignator = 'H';
 }
 else if ((-40 > Lat) && (Lat >= -48)) {
 LetterDesignator = 'G';
 }
 else if ((-48 > Lat) && (Lat >= -56)) {
 LetterDesignator = 'F';
 }
 else if ((-56 > Lat) && (Lat >= -64)) {
 LetterDesignator = 'E';
 }
 else if ((-64 > Lat) && (Lat >= -72)) {
 LetterDesignator = 'D';

 198

 }
 else if ((-72 > Lat) && (Lat >= -80)) {
 LetterDesignator = 'C';
 }
 else {
 LetterDesignator = 'Z'; // This is here as an error flag to show that the Latitude is
outside the UTM limits
 //
 }
 return LetterDesignator;
 }

 //
 public Position toPosition() {
 Position p = new Position();
 if (UTMtoLL(23, this, p)) {
 return (p);
 }
 return (p);
 }

 //
 public static boolean UTMtoLL(UTM utm, Position p) {
 return (UTMtoLL(23, utm, p));
 }

 //
 public static boolean UTMtoLL(int ReferenceEllipsoid, UTM utm, Position p) {
 //
 // converts UTM coords to lat/long. Equations from USGS Bulletin 1532
 // Written by Chuck Gantz- chuck.gantz@globalstar.com
 //
 double Lat = 0.0;
 double Long = 0.0;
 double k0 = 0.9996;
 double a = Ellipsoid.m_ElipseTable[ReferenceEllipsoid].m_EquatorialRadius;
 double eccSquared = Ellipsoid.m_ElipseTable[ReferenceEllipsoid].
 m_eccentricitySquared;
 double eccPrimeSquared;
 double root = Math.sqrt(1.0 - eccSquared);
 double e1 = (1.0 - root) / (1 + root);
 double N1, T1, C1, R1, D, M;
 double LongOrigin;
 double mu, phi1, phi1Rad;
 double x, y;

 199

 int ZoneNumber;
 char ZoneLetter;
 boolean NorthernHemisphere;

 x = utm.m_easting - 500000.0; // remove 500,000 meter offset for longitude
 y = utm.m_northing;
 int n = utm.m_utmZone.length();
 if (! (n == 2 || n == 3)) {
 return (false);
 }

 ZoneNumber = Integer.parseInt(utm.m_utmZone.substring(0, n - 1));
 ZoneLetter = utm.m_utmZone.charAt(n - 1);
 if ((ZoneLetter - 'N') >= 0) {
 NorthernHemisphere = true;
 }
 else {
 NorthernHemisphere = false;
 y -= 10000000.0; // remove 10,000,000 meter offset used for southern hemisphere
 }

 LongOrigin = (ZoneNumber - 1.0) * 6.0 - 180.0 + 3.0; //+3 puts origin in middle of
zone

 eccPrimeSquared = (eccSquared) / (1 - eccSquared);

 double E2 = eccSquared * eccSquared;
 double E3 = eccSquared * E2;
 M = y / k0;
 mu = M / (a * (1.0 - eccSquared / 4.0 - 3.0 * E2 / 64.0 - 5.0 * E3 / 256.0));
 //
 double sin2mu = Math.sin(2 * mu);
 double sin4mu = Math.sin(4 * mu);
 double sin6mu = Math.sin(6 * mu);
 double Q2 = e1 * e1;
 double Q3 = e1 * Q2;
 phi1Rad = mu + (3.0 * e1 / 2.0 - 27.0 * Q3 / 32.0) * sin2mu
 + (21.0 * Q2 / 16.0 - 55.0 * Q2 * Q2 / 32.0) * sin4mu
 + (151.0 * Q3 / 96.0) * sin6mu;
 phi1 = phi1Rad * rad2deg;
 //
 double sinphi = Math.sin(phi1Rad);
 double sinphi2 = sinphi * sinphi;
 double cosphi = Math.cos(phi1Rad);
 double cosphi2 = cosphi * cosphi;

 200

 double tanphi = Math.tan(phi1Rad);
 double tanphi2 = tanphi * tanphi;
 N1 = a / Math.sqrt(1.0 - eccSquared * sinphi2);
 T1 = tanphi2;
 C1 = eccPrimeSquared * cosphi2;
 R1 = a * (1.0 - eccSquared) / Math.pow(1.0 - eccSquared * sinphi2, 1.5);
 D = x / (N1 * k0);
 //
 double C2 = C1 * C1;
 double D2 = D * D;
 double D3 = D * D2;
 //
 Lat = phi1Rad -
 (N1 * tanphi / R1) *
 (D2 / 2.0 -
 (5.0 + 3.0 * T1 + 10.0 * C1 - 4.0 * C2 - 9.0 * eccPrimeSquared) * D2 *
 D2 / 24.0
 +
 (61.0 + 90.0 * T1 + 298.0 * C1 + 45.0 * T1 * T1 - 252.0 * eccPrimeSquared -
 3.0 * C2) * D3 * D3 / 720.0);
 Lat = Lat * rad2deg;
 //
 Long = (D - (1.0 + 2.0 * T1 + C1) * D3 / 6.0 +
 (5.0 - 2.0 * C1 + 28.0 * T1 - 3.0 * C2 + 8.0 * eccPrimeSquared +
 24.0 * T1 * T1) * D2 * D3 / 120.0) / cosphi;
 Long = LongOrigin + Long * rad2deg;
 p.setLatLng(Lat, Long);
 //
 return (true);
 }

 //
 public static void main(String[] args) {
 UTM utm = new UTM();
// double lat = 41+0/60.0+29/3600.0;
// double lng = 34+33/60.0+31/3600.0;
 // UTM = 36T 04540821.210 00631067.899
// double lat = 41+54/60.0+10/3600.0;
// double lng = 115+15/60.0+50/3600.0;
 // UTM = 50T 04640439.156 00355998.335
 double lat = -21.5794444;
 double lng = 27.6691667;
 // UTM = 35K 07613572.678 00569274.910
 System.out.println(lat + " " + lng);
 if (UTM.LLtoUTM(23, lat, lng, utm)) {

 201

 System.out.println("UTM = " + utm);
 Position p = new Position();
 if (UTM.UTMtoLL(23, utm, p)) {
 System.out.println(p.getLat() + " " + p.getLng());
 }
 }
 else {
 System.out.println("Invalid UTM");
 }
 }

}
/*
 * sigact.java
 *
 * Created on May 6, 2007, 1:04 PM
 * LCDR Kurt Rothenhaus
 * Dissertation Source Code
 *
 */

package com.sun.BaseSigactEJB;

/**
 *
 * @author kjrothen
 */
public class sigact {

 /** Creates a new instance of sigact */
 public sigact() {}

 private String AttackTarget;
 private double SigLat;
 private double SigLon;

 public String getAttackTarget(){
 return AttackTarget;
 }

 public void setAttackTarget(String AttackTarget){
 this.AttackTarget = AttackTarget;
 }

 202

 public double getSigLat(){
 return SigLat;
 }
 public void setSigLat(double SigLat){
 this.SigLat = SigLat;
 }

 public double getSigLon(){
 return SigLon;
 }
 public void setSigLon(double SigLon){
 this.SigLon = SigLon;
 }
}
 /*
 * FusionEngineGeo.java
 * Kurt Rothenhaus
 * * Created on May 6, 2007, 11:25 AM
 * Used in conjuntion with research on AutoData Fusion in a SOA
 * This class takes input from two data sources and approximates the position
 */
package com.sun.GeoTrackFusion;

import java.util.ArrayList;
import java.util.Iterator;
import javax.ejb.Stateless;
import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebParam.Mode;
import javax.jws.WebService;
import java.sql.Timestamp;
import java.util.List;
import javax.xml.ws.Holder;
/**
 *
 * @author kjrothen
 */

@Stateless()
@WebService()
public class GeoTrackFusion {

 203

 /**
 * Web service operation
 */
@WebMethod
public List<combined> isGeoTrackFusion(List<sigact> sigbatch, List<project>
projbatch){

 //Return array of new tracks

 List<combined> fusebatch = new ArrayList();
 fusebatch = getfusedBatch(sigbatch,projbatch);
return fusebatch;

}

public List<combined> getfusedBatch(List<sigact> sigbatch, List<project> projbatch) {

 List<combined> comie = new ArrayList<combined>();

 int iterSig =0;
 double siglat = 0;
 double siglon = 0;
 double projlat = 0;
 double projlon = 0;
 String newname;
 boolean maketrack = false;

 Iterator<sigact> sigIter = sigbatch.iterator();
 while(sigIter.hasNext()) {
 sigact s = sigIter.next();
 siglat = s.getSigLat();
 siglon = s.getSigLon();
 Iterator<project> projIter = projbatch.iterator();
 while(projIter.hasNext()) {
 project p = projIter.next();
 projlat = p.getProjLat();
 projlon = p.getProjLon();
 // maketrack fourth varialble is a distance setting in Miles.
 maketrack = isnextTo(projlat,projlon,siglat,siglon,1000);
 if (maketrack){
 newname = p.getProjectName() + s.getAttackTarget();

 204

 double newlat = (projlat + siglat)/2;
 double newlon = (projlon + siglon)/2;

 combined com = new combined();
 com.setcombName(newname);
 com.setcombLat(newlat);
 com.setcombLon(newlon);
 comie.add(com);

 }// END IF
 }
 }

 return comie;

 }

public boolean isnextTo(double projlat, double projlon, double lat, double lon, double
spininitial) {

 //add spinner value to projlat/projlon to get area
 // String spin1 = jSpinner2.getValue().toString();

 double spin = spininitial * .01;

 double top_left_lat = projlat +
spin;//Double.parseDouble(ratMapperFrame.jTextField5.getText());
 double top_left_lon = projlon -
spin;//Double.parseDouble(ratMapperFrame.jTextField1.getText());
 double Bot_right_lat = projlat -
spin;//Double.parseDouble(ratMapperFrame.jTextField4.getText());
 double Bot_right_lon = projlon +
spin;//Double.parseDouble(ratMapperFrame.jTextField2.getText());

 System.out.println("project =" + projlat + "/" +projlon+"@"+ spin);
 System.out.println("***");

 System.out.println("top_left_lat =" + top_left_lat);
 System.out.println("top_left_lon =" + top_left_lon);
 System.out.println("Bot_right_lat =" + Bot_right_lat);
 System.out.println("Bot_right_lon =" + Bot_right_lon);

 205

 if ((lat >= Bot_right_lat) && (lat <= top_left_lat)
 && (lon <= Bot_right_lon) && (lon >= top_left_lon)){

 System.out.println("True");
 return true;

 }
 else {
 System.out.println("false");
 return false;
 }
 }

}
/*
 * sigact.java
 *
 * Created on May 6, 2007, 1:04 PM
 *
 * To change this template, choose Tools | Template Manager
 * and open the template in the editor.
 */

package com.sun.GeoTrackFusion;

/**
 *
 * @author kjrothen
 */
public class combined {

 /** Creates a new instance of sigact */
 public combined() {}

 private String combName;
 private double combLat;
 private double combLon;

 public String getcombName(){
 return combName;
 }

 206

 public void setcombName(String combName){
 this.combName = combName;
 }

 public double getcombLat(){
 return combLat;
 }
 public void setcombLat(double combLat){
 this.combLat = combLat;
 }

 public double getcombLon(){
 return combLon;
 }
 public void setcombLon(double combLon){
 this.combLon = combLon;
 }
}

/*
 * project.java
 *
 * Created on May 6, 2007, 1:04 PM
 *
 * To change this template, choose Tools | Template Manager
 * and open the template in the editor.
 */

package com.sun.GeoTrackFusion;
/**
 *
 * @author kjrothen
 */
public class project {

 /** Creates a new instance of sigact */
 public project() {}

 private String ProjectName;
 private double ProjLat;
 private double ProjLon;

 public String getProjectName(){
 return ProjectName;

 207

 }

 public void setProjectName(String ProjectName){
 this.ProjectName = ProjectName;
 }

 public double getProjLat(){
 return ProjLat;
 }
 public void setProjLat(double ProjLat){
 this.ProjLat = ProjLat;
 }

 public double getProjLon(){
 return ProjLon;
 }
 public void setProjLon(double ProjLon){
 this.ProjLon = ProjLon;
 }
}
/*
 * NewTrackService.java
 *
 * Created on April 10, 2007, 12:15 AM
 * LCDR Kurt Rothenhaus
 * Created in support of Dissertation Research
 * and open the template in the editor.
 * Accepts new track objects and establishes persistence via a JDBC
 * connection.
 */

package com.sun.ReconProjEJB;
import java.util.List;
import java.util.ArrayList;
import javax.ejb.Stateless;
import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebParam.Mode;
import javax.jws.WebService;
import javax.xml.ws.Holder;
import com.borland.dx.sql.dataset.*;
import com.borland.dbswing.*;

@WebService
@Stateless

 208

public class ReconProjectEJB{

 Database database1 = new Database();
 QueryDataSet queryDataSet1 = new QueryDataSet();
 DBDisposeMonitor dBDisposeMonitor1 = new DBDisposeMonitor();

@WebMethod
public List<RetVal> getReconProject(@WebParam(name="Sector") String SECTOR){

 List<RetVal> projbatch = new ArrayList();
 return projbatch = getProjBatch(SECTOR);
 }

 public List<RetVal> getProjBatch(String SECTOR){

 queryDataSet1.close();

 queryDataSet1.setQuery(new com.borland.dx.sql.dataset.QueryDescriptor(database1,
"SELECT
RMS_ALL.SHORT_NAME,RMS_ALL.URI,RMS_ALL.GRID_LOCATION" +
 " FROM \"C:\\Documents and Settings\\kjrothen\\My
Documents\\RMS_ALL\".RMS_ALL"
 + " WHERE SECTOR = '"+SECTOR+ "' ", null, true, Load.ALL));

 database1.setConnection(new
com.borland.dx.sql.dataset.ConnectionDescriptor("jdbc:odbc:RMS_ALL", "", "", false,
"sun.jdbc.odbc.JdbcOdbcDriver"));
 database1.setUseCaseSensitiveId(true);
 database1.setUseSpacePadding(false);
 database1.setDatabaseName("");
 queryDataSet1.open();
 String MGRS = "null";

 List<RetVal> progie = new ArrayList<RetVal>();

 while (queryDataSet1.inBounds()) {

 MGRS = queryDataSet1.getString("GRID_LOCATION");
 String projectName = queryDataSet1.getString("URI");
 Position R = MGRStoLat(MGRS);
 double userlat = R.getLat();

 209

 double userlon = R.getLng();

 RetVal project = new RetVal();
 project.setURI(projectName);
 project.setHVULat(userlat);
 project.setHVULong(userlon);
 progie.add(project);
 queryDataSet1.next();
 }

 queryDataSet1.close();
 return progie;
 }

public Position MGRStoLat(String Mgrs){

 UTM utm = new UTM();

 try {
 MGR.MRGtoUTM(Mgrs, utm);
 System.out.println("MRG=" + Mgrs);
 System.out.println("UTM=" + utm);
 Position p = utm.toPosition();
 System.out.println(" LL=" + p);
 double lat = p.getLat();
 double lng = p.getLng();
 return p;
 }
 catch (Exception e) {
 MGR.MRGtoUTM("01NGD1200015000", utm);
 Position p = utm.toPosition();
 System.out.println("Catch the exception =" + p);
 return p;
 }
 }

}

 210

 /*
 * ReconProjecEJB.java
 *
 * Created on April 10, 2007, 12:15 AM
 * LCDR Kurt Rothenhaus
 * Created in support of Disertation Research
 * and open the template in the editor.
 */

package com.sun.NewTrackService;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.Iterator;
import java.util.List;
import java.util.ArrayList;
import javax.ejb.Stateless;
import javax.jws.WebMethod;
import javax.jws.WebService;

@WebService
@Stateless
public class NewTrackService{

@WebMethod
public String newTrackdb(List<combined> fusebatch){
 Connection conn = null;
 double comlat = 0.0;
 double comlon = 0.0;
 String comname = null;

try{
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 211

} catch(java.lang.ClassNotFoundException e) {
 System.err.print("ClassNotFoundException: ");
 System.err.println(e.getMessage());
}

try{
 conn = DriverManager.getConnection("jdbc:odbc:COMBINED");
}catch(SQLException ex){
 System.err.println("database connection: " + ex.getMessage());
}

 Iterator<combined> comIter = fusebatch.iterator();
 while(comIter.hasNext()) {
 combined c = comIter.next();
 comlat = c.getcombLat();
 comlon = c.getcombLon();
 comname = c.getcombName();

 Statement stmt;
 try {
 stmt = conn.createStatement();
 stmt.executeUpdate("INSERT INTO Combined VALUES
('"+comname+"',"+comlat+","+comlon+")");
 } catch (SQLException ex) {
 ex.printStackTrace();
 }

 }

 return "New Tracks added to Database ";
 }
}

/*
 * ReconProjecEJB.java
 *
 * Created on April 10, 2007, 12:15 AM
 * LCDR Kurt Rothenhaus

 212

 * Created in support of Disertation Research
 * and open the template in the editor.
 */

package com.sun.ReconProjEJB;
import java.util.List;
import java.util.ArrayList;
import javax.ejb.Stateless;
import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebParam.Mode;
import javax.jws.WebService;
import javax.xml.ws.Holder;
import com.borland.dx.sql.dataset.*;
import com.borland.dbswing.*;

@WebService
@Stateless
public class ReconProjectEJB{

 Database database1 = new Database();
 QueryDataSet queryDataSet1 = new QueryDataSet();
 DBDisposeMonitor dBDisposeMonitor1 = new DBDisposeMonitor();

@WebMethod
public List<RetVal> getReconProject(@WebParam(name="Sector") String SECTOR){

 List<RetVal> projbatch = new ArrayList();
 return projbatch = getProjBatch(SECTOR);
 }

 public List<RetVal> getProjBatch(String SECTOR){

 queryDataSet1.close();

 queryDataSet1.setQuery(new com.borland.dx.sql.dataset.QueryDescriptor(database1,
"SELECT
RMS_ALL.SHORT_NAME,RMS_ALL.URI,RMS_ALL.GRID_LOCATION" +
 " FROM \"C:\\Documents and Settings\\kjrothen\\My
Documents\\RMS_ALL\".RMS_ALL"
 + " WHERE SECTOR = '"+SECTOR+ "' ", null, true, Load.ALL));

 213

 database1.setConnection(new
com.borland.dx.sql.dataset.ConnectionDescriptor("jdbc:odbc:RMS_ALL", "", "", false,
"sun.jdbc.odbc.JdbcOdbcDriver"));
 database1.setUseCaseSensitiveId(true);
 database1.setUseSpacePadding(false);
 database1.setDatabaseName("");
 queryDataSet1.open();
 String MGRS = "null";

 List<RetVal> progie = new ArrayList<RetVal>();

 while (queryDataSet1.inBounds()) {

 MGRS = queryDataSet1.getString("GRID_LOCATION");
 String projectName = queryDataSet1.getString("URI");
 Position R = MGRStoLat(MGRS);
 double userlat = R.getLat();
 double userlon = R.getLng();

 RetVal project = new RetVal();
 project.setURI(projectName);
 project.setHVULat(userlat);
 project.setHVULong(userlon);
 progie.add(project);
 queryDataSet1.next();
 }

 queryDataSet1.close();
 return progie;
 }

public Position MGRStoLat(String Mgrs){

 UTM utm = new UTM();

 try {
 MGR.MRGtoUTM(Mgrs, utm);
 System.out.println("MRG=" + Mgrs);
 System.out.println("UTM=" + utm);
 Position p = utm.toPosition();

 214

 System.out.println(" LL=" + p);
 double lat = p.getLat();
 double lng = p.getLng();
 return p;
 }

 catch (Exception e) {
 MGR.MRGtoUTM("01NGD1200015000", utm);
 Position p = utm.toPosition();
 System.out.println("Catch the exception =" + p);
 return p;
 }
 }

}

*******************BPEL***
<?xml version="1.0" encoding="UTF-8"?>
<process
 name="GeoTrackFusion"
 targetNamespace="http://enterprise.netbeans.org/bpel/GeoTrackFusion"
 xmlns="http://schemas.xmlsoap.org/ws/2004/03/business-process/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2004/03/business-process/"
 xmlns:wsdlNS="http://enterprise.netbeans.org/bpel/GeoTrackFusion"
xmlns:ns1="http://j2ee.netbeans.org/wsdl/GeoTrackFusion"
xmlns:ns2="http://BaseSigactEJB.sun.com/" xmlns:ns3="http://ReconProjEJB.sun.com/"
xmlns:ns4="http://GeoTrackFusion.sun.com/"
xmlns:ns5="http://NewTrackService.sun.com/"
xmlns:ns0="http://xml.netbeans.org/schema/newXMLSchema">
 <import namespace="http://j2ee.netbeans.org/wsdl/GeoTrackFusion"
location="GeoTrackFusion.wsdl" importType="http://schemas.xmlsoap.org/wsdl/"/>
 <import namespace="http://BaseSigactEJB.sun.com/"
location="Partners/BaseSigactEJB/BaseSigactEJB.wsdl"
importType="http://schemas.xmlsoap.org/wsdl/"/>
 <import namespace="http://ReconProjEJB.sun.com/"
location="Partners/ReconProjectEJB/ReconProjectEJB.wsdl"
importType="http://schemas.xmlsoap.org/wsdl/"/>
 <import namespace="http://GeoTrackFusion.sun.com/"
location="Partners/GeoTrackFusion/GeoTrackFusion.wsdl"
importType="http://schemas.xmlsoap.org/wsdl/"/>

 215

 <import namespace="http://NewTrackService.sun.com/"
location="Partners/NewTrackService/NewTrackService.wsdl"
importType="http://schemas.xmlsoap.org/wsdl/"/>
 <partnerLinks>
 <partnerLink name="NewTrackEJB"
partnerLinkType="ns5:NewTrackServiceLinkType"
partnerRole="NewTrackServiceRole"/>
 <partnerLink name="GeoFuserEJB"
partnerLinkType="ns4:GeoTrackFusionLinkType"
partnerRole="GeoTrackFusionRole"/>
 <partnerLink name="ReconEJB"
partnerLinkType="ns3:ReconProjectEJBLinkType"
partnerRole="ReconProjectEJBRole"/>
 <partnerLink name="SigactEJB" partnerLinkType="ns2:BaseSigactEJBLinkType"
partnerRole="BaseSigactEJBRole"/>
 <partnerLink name="GeoTrackFusionBpel"
partnerLinkType="ns1:GeoTrackFusionPartner"
myRole="GeoTrackFusionPortTypeRole"/>
 </partnerLinks>
 <variables>
 <variable name="GeoTrackFusionOperationOutputfin"
messageType="ns1:GeoTrackFusionOperationReply"/>
 <variable name="NewTrackdbOutput" messageType="ns5:newTrackdbResponse"/>
 <variable name="NewTrackdbInput" messageType="ns5:newTrackdb"/>
 <variable name="IsGeoTrackFusionOutput"
messageType="ns4:isGeoTrackFusionResponse"/>
 <variable name="IsGeoTrackFusionInput"
messageType="ns4:isGeoTrackFusion"/>
 <variable name="GetReconProjectOutput"
messageType="ns3:getReconProjectResponse"/>
 <variable name="GetReconProjectInput" messageType="ns3:getReconProject"/>
 <variable name="ProcessBaseSIGACTEJBOutput"
messageType="ns2:processBaseSIGACTEJBResponse"/>
 <variable name="ProcessBaseSIGACTEJBInput"
messageType="ns2:processBaseSIGACTEJB"/>
 <variable name="GeoTrackFusionOperationInput"
messageType="ns1:GeoTrackFusionOperationRequest"/>
 </variables>
 <sequence>
 <receive name="ReceiveFromBpel" createInstance="yes"
partnerLink="GeoTrackFusionBpel" operation="GeoTrackFusionOperation"
portType="ns1:GeoTrackFusionPortType" variable="GeoTrackFusionOperationInput"/>
 <assign name="Assign1">
 <copy>

 216

<from>$GeoTrackFusionOperationInput.Fusionmessage/ns0:SigactStart</from>
 <to>$ProcessBaseSIGACTEJBInput.parameters/arg0</to>
 </copy>
 <copy>

<from>$GeoTrackFusionOperationInput.Fusionmessage/ns0:SigactFinish</from>
 <to>$ProcessBaseSIGACTEJBInput.parameters/arg1</to>
 </copy>
 <copy>
 <from>$GeoTrackFusionOperationInput.Fusionmessage/ns0:Sector</from>
 <to>$GetReconProjectInput.parameters/Sector</to>
 </copy>
 </assign>
 <flow name="Flow1">
 <invoke name="InvokeSigactEJB" partnerLink="SigactEJB"
operation="processBaseSIGACTEJB" portType="ns2:BaseSigactEJB"
inputVariable="ProcessBaseSIGACTEJBInput"
outputVariable="ProcessBaseSIGACTEJBOutput"/>
 <invoke name="InvokeReconEJB" partnerLink="ReconEJB"
operation="getReconProject" portType="ns3:ReconProjectEJB"
inputVariable="GetReconProjectInput" outputVariable="GetReconProjectOutput"/>
 </flow>
 <assign name="Assign2">
 <copy>

<from>$ProcessBaseSIGACTEJBOutput.parameters/return/attackTarget</from>
 <to>$IsGeoTrackFusionInput.parameters/arg0/attackTarget</to>
 </copy>
 <copy>
 <from>$ProcessBaseSIGACTEJBOutput.parameters/return/sigLat</from>
 <to>$IsGeoTrackFusionInput.parameters/arg0/sigLat</to>
 </copy>
 <copy>
 <from>$ProcessBaseSIGACTEJBOutput.parameters/return/sigLon</from>
 <to>$IsGeoTrackFusionInput.parameters/arg0/sigLon</to>
 </copy>
 <copy>
 <from>$GetReconProjectOutput.parameters/return/URI</from>
 <to>$IsGeoTrackFusionInput.parameters/arg1/projectName</to>
 </copy>
 <copy>
 <from>$GetReconProjectOutput.parameters/return/HVULong</from>
 <to>$IsGeoTrackFusionInput.parameters/arg1/projLon</to>
 </copy>

 217

 <copy>
 <from>$GetReconProjectOutput.parameters/return/HVULat</from>
 <to>$IsGeoTrackFusionInput.parameters/arg1/projLat</to>
 </copy>
 </assign>
 <invoke name="InvokeGeoFuserEJB" partnerLink="GeoFuserEJB"
operation="isGeoTrackFusion" portType="ns4:GeoTrackFusion"
inputVariable="IsGeoTrackFusionInput" outputVariable="IsGeoTrackFusionOutput"/>
 <assign name="Assign5">
 <copy>
 <from>$IsGeoTrackFusionOutput.parameters/return/combLat</from>
 <to>$NewTrackdbInput.parameters/arg0/combLat</to>
 </copy>
 <copy>
 <from>$IsGeoTrackFusionOutput.parameters/return/combLon</from>
 <to>$NewTrackdbInput.parameters/arg0/combLon</to>
 </copy>
 <copy>
 <from>$IsGeoTrackFusionOutput.parameters/return/combName</from>
 <to>$NewTrackdbInput.parameters/arg0/combName</to>
 </copy>
 </assign>
 <invoke name="InvokeNewTrackEJB" partnerLink="NewTrackEJB"
operation="newTrackdb" portType="ns5:NewTrackService"
inputVariable="NewTrackdbInput" outputVariable="NewTrackdbOutput"/>
 <assign name="Assign6">
 <copy>
 <from>$NewTrackdbOutput.parameters/return</from>
 <to>$GeoTrackFusionOperationOutputfin.FusionResponse/ns0:return</to>
 </copy>
 </assign>
 <reply name="ReplytoBpel" partnerLink="GeoTrackFusionBpel"
operation="GeoTrackFusionOperation" portType="ns1:GeoTrackFusionPortType"
variable="GeoTrackFusionOperationOutputfin"/>
 </sequence>

</process>

*************************GeoTrackFusion wsdl***************************
<?xml version="1.0" encoding="UTF-8"?>
<definitions targetNamespace="http://j2ee.netbeans.org/wsdl/GeoTrackFusion"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 218

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://j2ee.netbeans.org/wsdl/GeoTrackFusion" name="GeoTrackFusion"
xmlns:ns="http://xml.netbeans.org/schema/newXMLSchema"
xmlns:plink="http://schemas.xmlsoap.org/ws/2004/03/partner-link/">
 <types>
 <xsd:schema targetNamespace="http://j2ee.netbeans.org/wsdl/GeoTrackFusion">
 <xsd:import namespace="http://xml.netbeans.org/schema/newXMLSchema"
schemaLocation="GeoTrackFusion.xsd"/>
 </xsd:schema>
 </types>
 <message name="GeoTrackFusionOperationRequest">
 <part name="Fusionmessage" element="ns:processGeoTrackFusion"/>
 </message>
 <message name="GeoTrackFusionOperationReply">
 <part name="FusionResponse" element="ns:processGeoTrackFusionResponse"/>
 </message>
 <portType name="GeoTrackFusionPortType">
 <operation name="GeoTrackFusionOperation">
 <input name="input1" message="tns:GeoTrackFusionOperationRequest"/>
 <output name="output1" message="tns:GeoTrackFusionOperationReply"/>
 </operation>
 </portType>
 <binding name="GeoTrackFusionBinding" type="tns:GeoTrackFusionPortType">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="GeoTrackFusionOperation">
 <soap:operation/>
 <input name="input1">
 <soap:body use="literal"/>
 </input>
 <output name="output1">
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="GeoTrackFusionService">
 <port name="GeoTrackFusionPort" binding="tns:GeoTrackFusionBinding">
 <soap:address
location="http://localhost:18181/GeoTrackFusionService/GeoTrackFusionPort"/>
 </port>
 </service>
 <plink:partnerLinkType name="GeoTrackFusionPartner">
 <!-- partnerLinkType are automatically generated when a new portType is added.
partnerLinkType are used by BPEL processes.

 219

In a BPEL process, a partner link represents the interaction between the BPEL process
and a partner service. Each partner link is associated with a partner link type.
A partner link type characterizes the conversational relationship between two services.
The partner link type can have one or two roles.-->
 <plink:role name="GeoTrackFusionPortTypeRole"
portType="tns:GeoTrackFusionPortType"/>
 </plink:partnerLinkType>
</definitions>

***********************GeoTrackFusion.xsd***************************
<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://xml.netbeans.org/schema/newXMLSchema"
 xmlns:tns="http://xml.netbeans.org/schema/newXMLSchema"
 elementFormDefault="qualified">
 <xsd:complexType name="processGeoTrackFusion">
 <xsd:sequence>
 <xsd:element name="SigactStart" nillable="true" type="xsd:string"/>
 <xsd:element name="SigactFinish" nillable="true" type="xsd:string"/>
 <xsd:element name="Sector" nillable="true" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="processGeoTrackFusionResponse">
 <xsd:sequence>
 <xsd:element name="return" nillable="true" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="processGeoTrackFusionResponse"
type="tns:processGeoTrackFusionResponse"/>
 <xsd:element name="processGeoTrackFusion" type="tns:processGeoTrackFusion"/>
</xsd:schema>

 220

THIS PAGE INTENTIONALLY LEFT BLANK

 221

LIST OF REFERENCES

Alberts, D, Garstka, J, Stein, F (1999). Net-Centric Capabilities. Washington, DC: CCRP

Publication Series.

Alberts, D. & Hayes R. (2003). Power to the Edge. Washington, DC: CCRP Publication

Series.

Barry, D. (2004). Service-oriented architecture (SOA) definition. Retrieved May 9, 2008,

from http://www.service-architecture.com

Barry, D. (2004). Web Services definition. Retrieved May 9, 2008,

Bennett, T. (2004). Pentagons New Map. New York, NY: Putnam’s Sons.

Bequet, H. (2001). Professional Java Soap. Chicago: Peer Information Inc.

Bowman, C. & Steinberg, A. (2001) A Systems Engineering approach for implementing

Data Fusion Systems. In D. Hall and J. Llinas, Handbook of Multi-sensor Data

Fusion (16-1 to 16-38). Boca Raton, FL: CRC Press.

Buschmann, F., Henney, K., Schmidt, D. (2007). Pattern-Oriented Software

Architecture: A Pattern Language for Distributed Computing, Hoboken, NJ: John

Wiley & Sons Ltd.

Czarnecki, K. & Eisenecker, U. (2000). Generative Programming, Methods, Tools, and

 Applications, Boston, MA: Addison-Wesley.

Department of Defense. (2003). Net-Centric Data Strategy, Washington, DC: U.S.

Government Printing Office. http://www.defenselink.mil/cio-nii/docs/Net-

Centric-Data-Strategy-2003-05-092.pdf, Retrieved January 10, 2008

Department of Homeland Defense. (2007) National Concept of Operations for Maritime

Domain Awareness, Washington, DC: U.S. Government Printing Office.

http://www.dhs.gov/xlibrary/assets/HSPD_MDAPlan.pdf, Retrieved January 10,

2008

 222

Department of the Navy Chief Information Officer. (2005). Department Of The Navy

Information Technology Applications And Data Management (SECNAVINST

5000.36A). Washington, DC: U.S. Government Printing Office.

Department of the Navy. (1996). Understanding Link-16, A guidebook for New Users.

Washington, DC: U.S. Government Printing Office

Engel, D., Rothenhaus, K., Settelmayer, G. (2006). eXtensible Common Operations

Picture, Space and Naval Warfare System Center Biannual Review.

Erl, T. (2005). Service Oriented Architecture Concepts, Technology, and Design. Saddle

 River, NJ: Prentice Hall.

 from http://www.service-architecture.com/web

services/articles/web_services_definition.html

Gaines, L. & Michael, J. (2005, November). Service Level Agreements as Vehicles for

Managing Acquisition of Software-Intensive Systems, Defense Acquisition

Journal, 285-305.

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995). Design Patterns-Elements of

Reusable Object-Oriented Software. Boston: Addison-Wesley.

Graham, S., David, D. (2005). Building Web Services with Java, London: Sams

 Publishing.

Hobbes, R.(2004) Internet Timeline, 2004, Retrieved May 9, 2008, from

http://www.zakon.org/robert/internet/timeline/

Hobbins, T. (2007, August). Cultural shift [Electronic Version]. C4ISR Journal, 117-123.

Humphrey, S., & Monteiro, M. (2002). Rumble in the jungle: J2EE versus .Net, Part 1,

How do J2EE and Microsoft's .Net compare in enterprise environments.

Retrieved May 9, 2008, http://www.javaworld.com/javaworld/jw-06-2002/jw-

0628-j2eevnet.html

Monson-Haefel, R., & Chappell, D. (2001). JAVA Message Service. New York, NY:

O’Reilly.

Moore, P. (2002). Characteristics of a Service Oriented Architecture. New York, NY: Irx

Limited.

 223

Office of Naval Research (1991). Functional Description of the Data Fusion Process.

Washington, DC: U.S. Government Printing Office.

Pirsig, R., (1991). Lila: An Inquiry into Morals, New York, NY: Bantam Books.

Pressman, S. (2001). Software Engineering, A Practitioner’s Approach Fifth Edition.

New York, NY: McGraw Hill.

Steinberg, A., Bowman, C. (2001). Revisions to the JDL Data Fusion Mode, In D. Hall

 and J. Llinas, Handbook of Multi-sensor Data Fusion (pp. 2-1-2-19). Boca Raton,

 FL: CRC Press.

U.S. Department of Defense. (2004). Department of Defense Architecture Framework

Deskbook. Washington, DC: U.S. Government Printing Office.

United States Coast Guard (2002). Applications For Equipment Authorization Of

Universal Shipborne Automatic Identification Systems To be Coordinated with

U.S. Coast Guard To Ensure Homeland Security. Washington, DC: U.S.

Government Printing Office. Retrieved August 8, 2007, from

http://www.navcen.uscg.gov/marcomms/ais.htm.

Willard, R. (2002, October). The Art of Command and Control. Proceedings, 128, 68-73.

 224

THIS PAGE INTENTIONALLY LEFT BLANK

 225

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

3. Professor James Bret Michael
 Department of Computer Science
 Naval Postgraduate School
 Monterey, California

4. Professor Man-Tak Shing
 Department of Computer Science
 Naval Postgraduate School
 Monterey, California

5. Professor Ted Lewis
 Department of Computer Science
 Naval Postgraduate School
 Monterey, California

6. Professor John Osmundson
 Department of Information Sciences
 Naval Postgraduate School

7. Dr. David Engel
 Code 273
 SPAWAR System Center San Diego

8. Dr. Frank White
 MITRE Corporation

9. John Shea
 Technical Director
 Navy Program Office for ISR (PEO C4I/PMW-120)

10. CAPT D.J. Legoff
 Deputy Program Manager
 Navy Program Office for Command and Control (PEO C4I/PMW-150)

 226

11. CAPT Dubois, USN (ret)
 NGA/JPSIO

12. LTC Carl Oros, USMC

Marine Coprs Representative
Department of Information Sciences

 Naval Postgraduate School

